Modeling Positive-Electrode Reaction Kinetics of a Sodium-Metal Chloride Cell

Saeed Khaleghi Rahimian^a, Ryan Ruixing Zhu^a, Michael Vallance^b, Badri Ramamurthi^b, Alan C. West^a

^a Department of Chemical Engineering, Columbia University, 500 West 120th Street, Room 801, New York, NY 10027, USA
 ^b GE Global Research, One Research Circle, Niskayuna, NY 12309, USA

A model has been developed to investigate the reaction mechanism in a mixed-metal chloride (MCl₂, M=Ni & Fe) electrode; chemically similar to those found in sodium-metal chloride cells; during constant-current oxidation and reduction at 300° C. The proposed model is also used to predict open-circuit-voltage (OCV) relaxation data obtained at different states of oxidation and reduction during galvanostatic interrupt titration. The OCV relaxation data exhibit large transitions between Fe⁺⁺/Fe and Ni⁺⁺/Ni Nernst potentials, following interrupted reduction at Fe⁺⁺ reduction potentials. These transitions are simulated by assuming spontaneous redox between NiCl₂ and iron, confirming that residual NiCl₂ is present during FeCl₂ reduction.

A thin (~2 mm) coin-shaped working electrode, comprising a granulated mixture of common salt and solid metal powders (35% NaCl, 57% Ni, 8% Fe), is contained in, and separated from, the auxiliary electrode by a ceramic β "-alumina solid electrolyte/separator (BASE) tube that conducts Na⁺. The experiment is designed so that the ionic electric field is perpendicular to the flat bottom of the tube. The cathode materials are impregnated with molten NaAlCl₄ that functions as a second electrolyte. The reversible electrode reaction can be written as:

 $M + 2NaCl \Leftrightarrow MCl_2 + 2Na^+ + 2e^- (M = Ni, Fe)$

The reference electrode, an aluminum wire immersed in NaCl-saturated NaAlCl₄, is contained in a soda-containing, borosilicate tube that conducts Na^+ .

The electrochemical process in the electrode is modeled as 3 electrochemical reactions. Iron redox is modeled as two separate reactions where an intermediate solid compound, Na_6FeCl_8 , participates in both reactions [1].

 $Fe + 6NaCl + 2Cl \implies Na_6FeCl_8 + 2e^{-1}$

 $3 \text{ Fe} + Na_6 \text{Fe} \text{Cl}_8 \Leftrightarrow 4 \text{Fe} \text{Cl}_2 + 6 Na^+ + 6e^-$

 $Ni + 2Cl^{-} \Leftrightarrow NiCl_2 + 2e^{-}$

The Nernst potentials of the first and third reactions depend on Cl⁻ activity in the electrolyte; this dependence is seen in the OCV relaxation measurements. Solid-state, mass-transfer-limited kinetics; involving dissolution of NiCl₂ from a triclinic (Ni,Fe)Cl₂ solid solution [2]; governs the reduction of nickel chloride. This kinetics formulation allows us to predict electrode potential while NiCl₂ and FeCl₂ reduce simultaneously. NaCl and Na₆FeCl₈ dissolution/precipitation kinetics are modeled using free-energy change as the driving force.

The model equations include material balances for the solid compounds (Ni, Fe, NiCl₂, FeCl₂, NaCl, Na₆FeCl₈) and Cl⁻ in the electrolyte. The other molecular

and anionic electrolyte species (AlCl₃, Al₂Cl₆, AlCl₄, Al₂Cl₇) [3] are assumed to be saturated.

Material Balances :

$$\frac{d\mathbf{c}_{i}^{s}}{dt} = \sum_{j=1}^{n_{\mathrm{P}}} \mathbf{R}_{j} \left(\mathbf{c}_{i}^{s}, \mathbf{c}_{\mathrm{O}}^{\theta} \right) + \sum_{j=1}^{n_{J}} J_{j} \left(\mathbf{c}_{i}^{s}, \mathbf{c}_{\mathrm{O}}^{\theta}, \eta_{j} \right)$$

$$\frac{d\mathbf{c}_{\mathrm{O}}^{\theta}}{dt} = \sum_{j=1}^{n_{\mathrm{P}}} \mathbf{R}_{\mathrm{O}j} \left(\mathbf{c}_{i}^{s}, \mathbf{c}_{\mathrm{O}}^{\theta} \right) + \sum_{j=1}^{n_{J}} J_{\mathrm{O}j} \left(\mathbf{c}_{i}^{s}, \mathbf{c}_{\mathrm{O}}^{\theta}, \eta_{j} \right)$$
(1)

 n_R and n_J are the number of chemical and electrochemical reactions, respectively. $c_i{}^s$ is the apparent solid concentration which is defined as the moles per electrode volume. Butler-Volmer kinetics is used to predict the electrochemical reaction rates where the overpotential for each reaction is given as:

 $\eta_{\rm j} = \phi_{\rm s} - \phi_{\rm e} - U_{\rm j}$

Where ϕ_s , ϕ_e and U_j are the solid, electrolyte and Nernst potentials for each reaction, respectively. Cl concentration gradient and over-potential gradients are neglected. These assumptions are shown valid for moderate redox rates ($\leq 0.2~A/cm^3$) for the present geometry. The charge balance is written as the equality of the sum of the electrochemical reaction rates and the total current density:

Charge Balance :

$$\frac{I_{app}}{V_{p}} = \sum_{j=1}^{n_{j}} j_{j} \left(c_{i}^{s}, c_{a}^{e}, \eta_{j} \right)$$
(2)

 I_{app} and V_P are the applied current and electrode volume, respectively. Thus, a DAE system of 5 differential equations (Eq. (1), NiCl₂ and FeCl₂ are directly calculated using Fe and Ni balances) and one algebraic equation (Eq. (2)) is integrated through time to obtain cell potential (ϕ_s). Due to sharp ϕ_s transitions associated with nickel oxidation and iron reduction onsets, MATLAB's DAE solvers failed to converge. Thus, the equations are integrated by using a MATLAB stiff ode solver, and by solving the algebraic equation using a robust golden section search and parabolic interpolation method at each time step. Optimal kinetic parameters are found by training the model with oxidation and reduction data generated at 50 mA (~ 0.1 A/cm³) and 100 mA (~ 0.2 A/cm³) using MATLAB's Global Optimization Toolbox.

This work was funded by the New York State Energy Research and Development Administration, agreement #18513. NYSERDA has not reviewed the information contained herein, and the opinions expressed in this report do not necessarily reflect those of NYSERDA or the State of New York.

References:

- 1. J. Coetzer, G.D. Wald , S.W. Orchard, J. Appl. Electrochem. 23, 790–800 (1993).
- J. Rijssenbeek, Y. Gao, Z. Zhong, M. Croft, N. Jisrawi, A. Ignatov, T. Tsakalakos, J. Power Sources 196, 2332–2339 (2011).
- 3. L. G. Boxall, H. L. Jones, R. A. Osteryoung, J Electrochem. Soc. 121, 223–231(1974).