ORR Activity and Durability of MBE-prepared Pt monolayers on Au(hkl) Single Crystal Substrates

Y. Iijima, T. Kondo, Y.Takahashi, Y. Bando, N.Todoroki, and <u>T.Wadayama</u> Graduate School of Environmental Studies, Tohoku University, Sendai 9808579, Japan

Background

Relation between oxygen reduction reaction (ORR) activities and topmost surface structures of Ptbased alloy nano-particles (NPs) is a key for developing highly-active, low-Pt-content cathode-electrode catalysts for PEMFC. However, disscussion of ORR is complicated because of uncertainties in outermost surface structures of the alloy NPs. Although Adzic and co-workers showed the Pt monolayer on Au(111) is less ORR active than clean Pt(111),¹⁾ Pt-shell-Au-core (Pt@Au) NPs show higher ORR activity than that of pure Pt NPs.²⁾ The published results clearly indicate atomic-level surface structures determine ORR proceeding on the real nanosized catalysts. In this study, we prepared Pt/Au(111), (100), and (110) (Pt/Au(hkl)) bimetallic surfaces by molecular beam epitaxy (MBE) and performed EC measurements in an inert atomosphere.

Experimental

MBE apparatus and UHV-EC sample transfer system have been described.³⁾ $Pt_{0.3nm}/Au(hkl)$ samples were prepared through 0.3-nm-thick-Pt depositions onto UHV-cleaned Au(hkl) surfaces by an electron-beam evaporation method. The resulting surface structures were verified with reflection high-energy electron diffraction (RHEED) and STM in UHV. EC measurements were conducted by a conventional glass-made electrochemical cell and rotating disk electrode (RDE) apparatus set in a N₂-purged glove box: RHE is used as a reference. CV (LSV) curves for the $Pt_{0.3nm}/Au(hkl)$ samples are recorded in N₂-purged (O₂-saturated) 0.1 M HClO₄.

Results and discussion

Because standard electrode potentials for Pt and Au are 1.18 and 1.5 V, respectively, the potential sweep beyond 1.5 V should cause EC oxidation and reduction of not only the epitaxial Pt layers but also the Au atoms present at subsurface regions. Fig.1 presents the CV curves of the $Pt_{0.3nm}/Au(hkl)$ recorded before and after the potential sweeps of 1.7V. The CV curves of as-prepared samples clearly depend on the surface symmetries of the Au substrates. After the 1.7V-potential-sweep, EC charges of the hydrogen adsorption (Q_{Had}) for the $Pt_{0.3nm}\!/Au(hkl)$ are increased irrespective of the Au surface symmetries. For example, the 1.7V-potentialsweep of the $Pt_{0.3nm}/Au(111)$ (blue) increases redox currents at 0.13 V that might stem from 110 step generation into the Pt(111) epitaxial surface. An LSV curve of the 1.7V-potential-swept Pt_{0.3nm}/Au(111) exhibited more positive shift than the as-prepared sample. The results clearly indicate that surface defects such as 110 steps at the topmost Pt(111) lattice might contribute to the ORR activity enhancement. Also, increase in Q_{Had} for the $Pt_{0.3nm}/Au(100)$ (green) and the positive shift of the LSV curve (not shown) suggest that extension of the topmost Pt(100) lattice correlate with ORR enhancement. As for the $Pt_{0.3nm}/Au(110)$ (orange), the 1.7V potentialsweep increases the $Q_{\text{Had}}.$ However, the LSV curve remained unchanged (not shown), indicating that extension of Pt(110) facets on Au(110) seems to be

independent of the activity enhancement.

Fig. 1 Change in CV curves for Pt_{0.3nm}/Au(hkl) before (asprepared) and after 1.7V potential sweep.

To evaluate electrochemical stability of the $Pt_{0.3nm}/Au(111)$, potential cycles between 0.6V to 1.0V are applied in O_2 saturated 0.1M HClO₄. Fig. 2 shows ORR activity changes during the potential cycles. The ORR activities decrease with increase the cycles: the j_k value at 0.9 V is estimated to be ca. 60 % after 1000 cycles. The Q_{Had} value estimated for the CV curve recorded after 1000 cycles slightly increased.

Fig. 2 ORR activity dependence on the potential cycling of the $Pt_{0.3nm}/Au(111)$.

The results obtained in this study suggest that the topmost surface structures of Pt@Au NPs determine the electrocatalysis mechanism and that the morphologies of the most dense plane of Pt(111) correlate with the degree of the ORR activity enhancement.

Acknowledgement

This work was supported by New Energy and Industrial Technology Development Organization (NEDO), Japan and Grant-in-Aid for Scientific Research (B) of JSPS. **References**

J. Zhang et al., *Angew. Chem. Int. Ed.*, 44, 2132 (2005).
M. Shao et al., *J. Phys. Chem. Lett.*, 2, 67 (2011).

- M.Inaba et al. ECS Trans., 33, 231 (2010).
- 3) Y. Iijima et al., J. Electroanal. Chem., 685, 79 (2012).