Understanding the Durability and ORR Reactivity of Four Different Dealloyed PtNi_x Cathodic Catalysts

<u>D. E. Ramaker¹</u>, K. Caldwell¹, S. Mukerjee², Q. Jia², and J.M. Ziegelbauer³ ¹Department of Chemistry, George Washington University, Washington, D.C. 20052 ²Dept. of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115 ³General Motors Technical Center, Warren, MI 48090

Recently[1] we reported the activity and durability of a wide range of de-alloyed PtNi catalysts (4 different catalysts at 3 different stages of life) tested in PEM fuel cells. The factors include, as summarized in Table 1, the PtNi3 precursor (A or B), the acid used for leaching the Ni (HNO₃ or H₂SO₄ denoted NA or SA), the time and dealloying temperature (time [hrs]/ temp[°C]), and the use of a post-dealloying thermal anneal in 5% H_2/N_2 at 400 °C for 4hrs (denoted un-annealed or annealed). Initial (BOL) ORR mass activities (A/mg-PGM at 0.9 V RT) and that after 10k and 30k cycles (following DOE protocol [2]) are given. All catalysts exceed the DOE 2017 BOL mass activity target (0.44A/mg-PGM at 0.9 V_{iR free} [2]), but have widely varying durability. Understanding the durability and its dependence on particle morphology requires knowledge of many properties such as the final Pt/Ni atomic ratios, outer Pt skin thickness, and nature of Pt sites on the outer surface; properties difficult to experimentally obtain.

Table 1 Mass activity (A/mg-PGM) of the PtNi_x catalysts

Pre	Acid	t/T	An	BOL	10k	30k
А	NA	24/70	ua	.50	.25	.17
В	NA	24/70	ua	.75	.66	.47
В	SA	24/80	ua	.64	.61	.51
В	SA	24/80	а	.48	.57	.56

The PtNi de-alloyed catalysts were characterized structurally with HAADF/EELS [3] and by XAS using Pt L_3 and Ni K-edge EXAFS and $\Delta\mu$ XANES [4]. The Ni K-edge $\Delta\mu$ XANES provides unique information on the Pt skin porosity and/or thickness and the Pt $L_3 \Delta\mu$ XANES on the adsorbate coverage and binding site information for adsorbates such as O(H)* (adsorbed O or OH) and OO(H)* (undissociated O₂ or OOH) on the Pt [4]. It is possible to follow these adsorbate coverages on the cathode in either N₂ or O₂ saturated electrolyte (0.1 M HClO₄). The O(H)* coverage with N₂, arises just from water activation, with O₂ from water and O₂ activation.

Previously [4], we reported the first *in situ* measurement of OOH_n* and O(H)* coverage on the PtNi_x A-NA catalyst along with two PtCo catalysts in O₂ using the Pt $\Delta\mu$ XANES.. The Sabatier principle [4] was confirmed, with the non-dissociative mechanism rate-determining on the Pt-O weak side, and the dissociative mechanism on the strong side of the volcano maximum. The lattice compression in the Pt skin appeared to dominate for the dealloyed PtM_x catalysts examined in that work, as indicated by the ordering with EXAFS Pt-Pt distances.

As illustrated in Fig. 1, the Ni $\Delta\mu$ XANES reveals the growing thickness of the Pt skin with cycling on the PtNi_x A-NA catalyst. HAADF data show that the A-NA catalyst at BOL has a multicore structure with a porous Pt skin [3]. This was confirmed by the Ni $|\Delta\mu|$ XANES showing Pt-O contact below 0.5 V, as the adsorbing O from water activation could easily gain access to the near

surface Ni. After cycling for 10k, the Pt skin is signifycantly enhanced, since penetration by the O is not evident until around 0.85 V. This is true in both N₂ and O₂, but the presence of a greater electronic ligand effect from the adsorbed molecular species in O₂ is clearly evident. After 30k cycles, penetration of the Pt skin is not evident until potentials well above 1.0 V, suggesting a much thicker Pt skin. Note the strong inhibition of water activation in the presence of O₂, as atomic O from the water must now compete for Pt sites with the molecularly adsorbed OO(H)* species.

Fig. 1 The magnitude of $\Delta \mu$ ($|\Delta \mu|$) in the range of -5 to 0 eV for the PtNi_x A-NA catalyst, reflecting an electronic ligand effect when positive and direct Ni-O contact when negative. The increasing relative Pt skin thickness with cycling is indicated schematically.

The $\Delta\mu$ results for the PtNi_x with B precursor and with greater durability clearly show that this arises from the initially thicker Pt skin. Further, this skin appears to thin with cycling, suggesting that the cycling produces a characteristic thickness; the Pt skin thickness is increased when it starts out thin in the A-NA catalyst, but it is reduced when it starts out thick in all of the B catalysts. The thickness of the Pt skin determines the rate of leaching of the Ni, and therefore has a profound effect on the durability of the catalysts, and the Pt skin thickness does not appear to strongly alter the ORR activity.

Post annealing is found to significantly reduce $O(H)^*$ and enhance $OO(H)^*$, indicating the strong reduction of active Pt corner and edge sites by the anneal process, and their return and increase in ORR activity after 10k cycles.

Acknowledgements

The catalyst precursors were provided by Johnson Matthey (R. O'Malley and A. Martinez). A. Kongkanand and T.E. Moylan (GM) performed the dealloying and MEA tests. Use of the NSLS, Brookhaven National Laboratory, was supported by the US DOE, Office of Science, OBES, under Contract No. DE-AC02-98CH10886. Partial funding for this research was provided by the Energy Efficiency and Renewable Energy Office of the US DOE under contract DE-FE0000458.

References

1. J.E. Owejan et al., Abs 15933, ECS meeting, May 12-16, 2013, Toronto, Ontario.

2. http://www.uscar.org/guest/teams/17/U-S-DRIVE-Fuel-Cell-Tech-Team

3. Z. Liu, H. Xin, Z. Yu, Y. Zhu, J. Zhang, J.A. Mundy, D.A. Muller, F.T. Wagner, *J. Electrochem. Soc.* **159**, F1-F6 (2012).

4. D. E. Ramaker, K. Caldwell, S. Mukerjee, Q. Jia, and J.M. Ziegelbauer, Abs. 1620, ECS meeting, Oct 7-12, 2012, Honolulu, HA; also submitted for publication.