The Composition of Oxide Films on Gd-doped Uranium Dioxide (UO₂)

Mayuri Razdan and David W. Shoesmith Department of Chemistry and Surface Science Western University of Western Ontario London, ON Canada N6A 3K7

Abstract

Spent nuclear fuel is doped with rare earth elements as a consequence of the in-reactor fission process. This doping influences both the composition and lattice structure of the fuel making it essential to determine its influence on the chemical/corrosion reactivity of the fuel under permanent disposal conditions. The aim of this study is to elucidate the influence of rare earth doping on fuel reactivity using Gd-doped UO₂. Electrochemical experiments are being conducted on stoichiometric UO_2 pellets uniformly doped with Gd^{III} (6 weight %) and characterized by Scanning Electron Microscopy (SEM)/Energy-dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. A combination of electrochemical solutions experiments in chloride with/without carbonate/bicarbonate followed by X-ray photoelectron spectroscopy (XPS) shows that surface oxidation occurs in stages

 $UO_2 \rightarrow UO_{2+x} \rightarrow UO_3.yH_2O$

While this general reaction scheme is similar to the anodic oxidation behavior observed on slightly nonstoichiometric UO₂ and SIMFUEL [1, 2] (UO₂ containing 11 dopants to simulated spent nuclear fuel), the extent of oxidation is sensitive to the degree of non-stoichiometry and the extent of Gd^{III} doping, the pH of the solution and the presence/absence of carbonate/bicarbonate. The overall inhibiting effect of Gd-doping on film formation/dissolution can be attributed to the high doping level (6 wt%) which Raman spectroscopy shows reduces the availability of the oxygen vacancies (O_V) required to accommodate O^{2-} during oxidation by forming RE^{III}-O_V defect clusters. This is in contrast to non-stoichiometry which leads to the formation of U^{V} - oxygen interstitial (O_I) clusters which facilitate a deeper oxidation of the surface. The influence of carbonate/bicarbonate, which complexes and solubilizes the U^{VI} state, confirms that the thin U^{VI} surface layer formed at positive potential on the Gd-doped surface is more readily dissolved that that on the more deeply oxidized SIMFUEL and nonstoichiometric UO_{2+x} .

References

[1] J. S. Goldik, H.W. Nesbitt, J.J. Noël and D.W. Shoesmith, *Electrochimica Acta* **49** (2004) 1699-1709

[2] B. G. Santos, H.W. Nesbitt, J.J. Noël and D.W. Shoesmith, *Electrochimica Acta* **49** (2004) 1863-1873