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 Internal resistance at porous electrodes for Li-ion 
batteries is a key factor for device power capability. It is 
difficult to improve the power capability without a full 
understanding of the electrochemical interfacial 
phenomena in porous electrodes. 
 

Recently, we reported electrochemical analysis 
of actual porous electrodes for Li-ion batteries by a 
combination of EIS using symmetric cells (Fig. 1) and 
theory of transmission line model (TLM) for cylindrical 
pores 1, 2. The individual internal resistance components 
of the actual porous electrode/electrolyte interface could 
be categorized as following parameters: electrolyte bulk 
resistance (Rsol), ionic resistance in pores (Rion), and 
charge-transfer resistance (Rct). These internal resistances 
are obtained by fitting the experimental impedance plots 
using TLM for both faradaic and non-faradaic processes. 
The overall impedances of non-faradaic and faradaic 
processes are expressed as Eq. 1 and 2, respectively 3-5. 
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(L: pore radius, X: pore length, Cdl: double layer 
capacitance) 
 

Figure 2 shows a comparison of the Nyquist 
plots obtained by experimental and calculation with state 
of charge (SOC) = 0 and 50%. Theoretical and 
experimental impedance behavior results agree with each 
other. These results indicate that the internal resistances 
are separated well by the proposed approach. [1] 
 

In this study, we investigated the potential 
dependence of the internal resistances of the porous 
electrodes for Li-ion batteries by using our proposed 
analysis. Figure 3 shows the potential dependence of 
Nyquist plots at 20°C. At all potential conditions, the 
plots appear as linear behavior with a 45-degree slop and 
semi-circle behavior in the high (20 Hz ~ 100 kHz) and 
low (100 mHz ~ 20 Hz) frequency regions, respectively. 
Only the semi-circle in the low frequency region varies 
with changes in potentials. This result indicates that only 
Rct shows the potential dependence without changing Rion. 
 

From the temperature dependence, a kinetics 
interpretation of potential dependence for faradaic 
processes of LiNiO2-based porous electrodes will be 
discussed. 
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Fig. 1  Schematic cell configurations: (a) asymmetric cell 
for conventional and classical impedance measurements 
and (b) symmetric cell with separator including 
electrolyte for Rion and Rct measurements. 
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Fig. 2  Nyquist plots for symmetric cells using two 
LiNiO 2-based electrodes in 1.0 M LiPF6 in 
EC/DMC/EMC (30/40/30) at 20 ˚C. Electrodes prepared 
at: (a) SOC = 0% (squares) and (b) SOC = 50% (circles). 
The solid lines are the best-fitted results with the 
equivalent circuits using Eq. 1 and 2, for (a) and (b), 
respectively. 
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Fig. 3  Nyquist plots for symmetric cells using LiNiO2-
based electrodes prepared at different potentials. 
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