Production Readiness of AlGaN/GaN HEMT on 6"/8" Si Dong S. Lee, Jie Su, Balakrishnan Krishnan, George D. Papasouliotis and Ajit Paranjpe Veeco MOCVD Operations 394 Elizabeth Avenue, Somerset, NJ 08873, USA.

AlGaN/GaN High Electron Mobility Transistors (HEMTs) on Si have emerged as a promising solution for high frequency power amplification and high voltage power switching applications, since they can utilize CMOS fab lines and the availability of low cost Si substrates in larger diameters (≥ 6 inch) compared with SiC and GaN. Encouraged by the recent device performance results achieved for AlGaN/GaN HEMTs on Si aided by the growth of high quality crack-free GaN growth on large substrates (6-8 inch), power electronics industry is currently engaged in pilot production of devices.

We have tested GaN/Si and HEMT repeat runs on 6" and 8" Si (111) substrates to confirm the repeatability and stability in large scale production MOCVD. We have also confirmed the epitaxial process repeatability, stability and longevity. The epitaxy process is carried out in 5x6" and 3x8" multi-wafer Veeco TurboDisc K465i production MOCVD systems. AlGaN/GaN HEMT consists of AlN nucleation layer, three step-graded Al_xGa_{1-x}N buffer layers of Aluminum molar fractions 0.75, 0.5, and 0.25, and 2-3 μ m GaN layer with Al_{0.25}Ga_{0.75}N barrier. 1 nm thick AlN spacer is optionally inserted between AlGaN barrier and GaN to improve the performance of 2DEG.

AlGaN/GaN HEMT structures exhibit good thickness uniformity (<2% in 1 σ) and are free of cracks from the edge to the wafer center. The Al composition variation across the wafer is less than 1.5%. XRD FWHM (full width at half maximum) average values for (002) and (102) planes are less than 600" and 800" respectively, for GaN layers with Carbon concentration of $6.0 \times 10^{18} \text{cm}^{-3}$. HEMT samples with 25 nm Al_{0.25}Ga_{0.75}N barrier exhibit an average 2DEG mobility (μ_{H}) greater than 1500cm²/V.s, and sheet carrier concentration of AlN spacer, the average mobility μ_{H} is greater than 2000 cm²/V.s and n_s higher than $8.0 \times 10^{12} \text{cm}^{-2}$. All these values are valid for 6" and 8" runs.

Table 1 shows the run to run (RtR) repeatability for the growth of 8" AlGaN/GaN HEMT structures. The growth rates of all the layers in the repeat runs show <0.5% in 1 σ (not individual layers in the table). The average GaN XRD FWHM of (002) and (102) diffraction planes are 535 and 660 arc-second, with <2% in 1 σ (within measurement limit), respectively. The post growth wafer curvatures at room temperature are consistently less than 50 μ m, for ~3 μ m stack. The repeat runs were interrupted by a system maintenance after more than 50 GaN/Si runs and LED growths to establish the system stability and flexibility.

The in-situ measurement shows reproducible wafer curvature for 6" HEMT repeat runs, as shown in Figure 1 (a) and (b). The HEMT surfaces have no microcracks and exhibited a step-flow feature comparable to the surface of the underlying GaN layer, indicating pseudomorphic growth of AlGaN with less strain relaxation. The root-mean-square (RMS) roughness is around 0.2-0.4 nm in a $5\mu mx5\mu m$ scanned area.

In summary, we report here the repeated growths of crack-free AlGaN/GaN HEMT on 6" and 8" silicon by large scale production MOCVD. The HEMT runs show good wafer-to-wafer and run-to-run repeatability, demonstrating the readiness of using Si substrates for the production of AlGaN/GaN HEMT epi.

Run #	Wafer	Thickness	XRD	XRD
	Bow (um)	(um)	002	102
HEMT 1	-6.95	2.94	525	659
HEMT 2	-11.13	2.98	539	670
HEMT 3	-12.19	2.98	520	644
HEMT 4	-13.39	2.97	522	644
HEMT 5	-16.77	3.04	525	654
HEMT 6	2.3	3.02	536	643
HEMT 7	-13.17	3	545	669
HEMT 8	-6.53	3.07	539	649
PM				
HEMT 9	-15.79	3.03	533	666
HEMT 10	-11.22	2.96	539	666
HEMT 11	-17.01	3.02	551	655
HEMT 12	-15.08	3.04	538	646
HEMT 13	-14.57	3.06	541	667
LED run				
HEMT 14	-17.37	3.08	539	668

Table1. 8" AlGaN/GaN HEMT Repeatability Runs

Figure 1. (a) wafer-to-wafer reproducibility and (b) runto-run repeatability/stability for 6" HEMT runs.

Figure 2. Identical surface morphology (RMS < 0.5nm for 5µm x 5µm scan) with pseudomorphic growth mode for run-to-run and wafer-to-wafer.