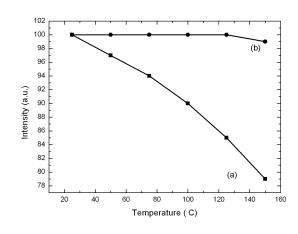
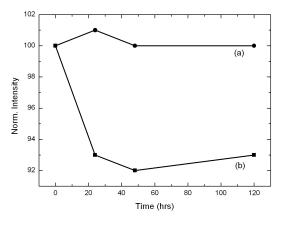
Efficient luminescence in Eu²⁺ activated (Ba,Ca)2Si5N8 phosphor


Digamber G Porob, Prasanth Kumar N, M. Satya Kishore GE Global Research, John F Welch Technology Centre, 122, Phase2, EPIP, Whitefield Road, Bangalore, India.


Anant A. Setlur GE Global Research, 1 Research Circle, Niskayuna, NY 12309

In this paper, we discuss luminescence properties and reliability under UV/blue flux for $(Ba,Ca)_2Si_5N_8:Ce^{3+},Eu^{2+}.$ The barium silicon nitride known to exist in an orthorhombic crystal structure with PL emission ~580nm, whereas, the calcium silicon nitride composition crystallizes in a monoclinic crystal system with emission ~ 620nm. Partial substitution of calicum upto ~25% in Ba₂Si₅N₈ increases crystal field around Eu² ion maintaining original orthorhombic structure of Ba₂Si₅N₈. This result in red shift of the emission position ~40nm (Figure 1). Futher, the emission of $(Ba,Ca)_2,Si_5N_8$ at elevated temperature (upto 150°C) are more stable than their end members (Figure2). Our investigation on the stability of this material under UV/blue radiation suggest that at specific concentration levels of Ca, the host $Ba_2Si_5N_8$ has shown better stability towards radiation damage in this system (Figure 3). We further investigate the reason for less radiation damage in (Ba,Ca)₂Si₅N₈ host compared to $Ba_2Si_5N_8$ and nature of their emission and excitation bands at different Eu²⁺ concentration levels.

Acknowledgements: Authors thank GE Lighting Solutions for supporting this work.

Figure 3. Integrated PL emission intensity as a function of time under, $\lambda_{ex} = 405$ nm, for (a) (Ba,Ca)₂Si₅N₈:Ce³⁺, Eu²⁺ and (b) Ba₂Si₅N₈:Ce³⁺, Eu²⁺