Improvement of Dye-Sensitized Solar Cells Performance using TiO₂ Nanoparticle/Nanorod Composite Photoanode

<u>Hyun-Seok Ko¹</u>, Eun-Mi Han², Chang-Kook Hong², Kyung-Hee Park^{3,*}

¹Department of Advanced Chemicals & Engineering,
²Department of Applied Chemical Engineering, Chonnam national University, Gwangju 500-757, Korea
³The Research Institute of Advanced Engineering Technology, Chosun University, Gwangju 501-759, Korea

*correspondence e-mail : see0936@chonnam.ac.kr

Abstract

We successfully fabricated the TiO₂ Nanoparticle/Nanorod composite photoanode to improve the power conversion efficiency of dye-sensitized solar cells(DSSCs). The TiO₂ nanorods were synthesized using a mechanical process, in which electrospun ${\rm TiO}_2$ nanofibers was grinded in a controlled way to obtain uniform size distribution. The conversion efficiency of the NR composite device was enhanced up to 30% compared with the pristine TiO_2 photoanode. The results demonstrate that the composite nanostructure can take advantage of both the fast electron transport of the nanorods and the high surface area of the nanoparticles

Results and Discussion

Table. 1 shows open circuit voltage(V_{oc}), short-circuit current (J_{sc}), fill factor(FF), and energy conversion efficiency(η) of each DSSCs, which were calculated from J-V curves. According to table 1, the DSSC made using the composite with 5wt% NR achieved an energy conversion efficiency(η) of 6.1%. In comparison, the DSSC made using the TiO₂ NPs had J_{sc} and η values of 13.2 mAcm⁻² and 4.7%, respectively, for the same photoanode thickness (~ 13 µm). The efficiency increases about 30%, it can be explained that the increase of J_{sc} from 13.2 to 16.1mA/cm². By adding 5wt% NR, this remarkable improvement of the J_{sc} is probably due to both the light scattering caused by the NRs and good dye uptake.

The incident photon to current conversion efficiency (IPCE) spectra of the NR0 and NP/NR with NR contents of 1, 3, 5, 10 wt% are shown in Fig. 2. The maximum efficiency at the 530 nm wavelength coincides with the maximum absorption wavelength of the N719 dye. In the entire wavelength region, NP/NR reveals higher external quantum efficiency (EQE) than NR0, which is compatible with the J_{sc} value obtained by photocurrent-voltage measurement. The IPCE peak height at 530 nm for the NP/NR5 electrode with 5 wt% NR is 70.6%, which is much higher than the value of 68.3% obtained for NR0 without NR composite, and 67% for the NP/NR10 electrode with 10 wt% NR. In order to estimate the light scattering effect, the NP/NR composite electrode showed higher EQE in the long wavelength region around 600 ~ 700 nm, suggesting that the NP/NR composite electrode provides an appreciable scattering effect. The IPCE peak at 630 nm for the NP/NR5 electrode with 5 wt% NR is 51.3%, which is much higher than the value of 32.71% obtained for NR0 without NR. The stronger scattering increased light absorption by up to 57%.

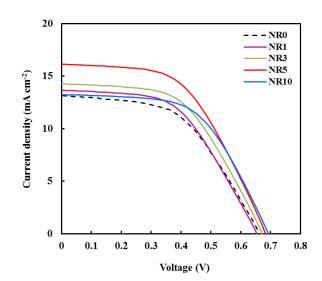


Fig.1 *J-V* curves of the analyzed DSSCs using different anode electrodes.

Table. 1 Photovoltaic performance of the DSSCs with photoanodes containing various percentages of nanorods.^a

Photoanodes (2NP/x)	$V_{oc}(V)$	Jsc (mA/ cm^2)	FF	η (%)
NR0	0.66	13.2	0.51	4.7
NR1	0.66	13.7	0.52	4.9
NR3	0.67	14.3	0.53	5.3
NR5	0.68	16.1	0.52	6.1
NR10	0.69	13.2	0.54	5.4
a			, , , , , , , , , , , , , , , , , , ,	

 $^{\rm a}$ mesasured with effective incident area of 0.25 cm² under AM 1.5 100 mW/cm² simulated sunlight irradiation.

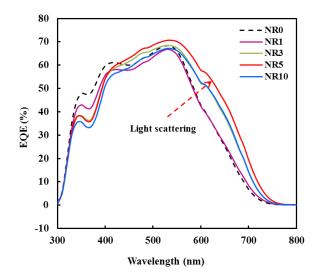


Fig. 2 Incident proton to current conversion efficiency (IPCE) curves for the DSSCs fabricated from NR/NP samples with NR percentages of 0, 1, 3, 5, and 10 wt%.

Reference

1. Grätzel M. Perspectives for dye-sensitized nanocrystalline solar cells. *Prog Photovolt Res Appl* 2000, 8:171-85.

2. Hong CK, Ko HS, Han EM, Yun JJ, Park KH. Enhanced efficiency of dye-sensitized solar cells doped with green phosphors $LaPO_4$:Ce, Tb or (Mg, Zn)Al₁₁O₁₉:Eu. *Nanoscale Research Letters* 2013, 8:219.

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2012010655).