High performance normally-off GaN MOSFETs on Si substrates

H. Kambayashi¹, N. Ikeda¹, T. Nomura¹, H. Ueda², Y. Morozumi², K. Harada³, K. Hasebe³, A. Teramoto⁴, S. Sugawa⁴, and T. Ohmi⁴

¹Furukawa Electric Co., Ltd., 2-4-3 Okano, Nishi-ku, Yokohama, Japan

²Tokyo Electron Ltd., Akasaka Biz Tower, 5-3-1,

Akasaka Minato-ku, Tokyo, Japan.

³Tokyo Electron Tohoku Ltd., 650 Mitsuzawa, Hosaka-

cho, Nirasaki City, Yamanashi, Japan

⁴Tohoku Univ. 6-6-10 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Japan

GaN has excellent physical properties for power devices such as a high breakdown field, a high carrier mobility, and a high saturation velocity compared with Si and SiC. For power transistors, normally-off operation is strongly required from the fail-safe point of view. GaN MOSFET is one of the good candidates to achieve good normally-off operation. AlGaN/GaN hybrid MOS-HFETs have the advantages of both MOS channel and an AlGaN/GaN heterostructure with high mobility two dimensional electron gases. Therefore, this type of GaN MOSFETs is promising for high efficiency power device. In this work, high performance normally-off AlGaN/GaN hybrid MOS-HFETs on Si substrates have been demonstrated.

Fig. 1 shows the schematic cross-sectional view of the AlGaN/GaN hybrid MOS-HFET. To achieve a high-breakdown voltage, thick epitaxial layers with a highly resistive layer and a thin unintentional GaN (u-GaN) channel layer are important. The breakdown voltage of AlGaN/GaN hybrid MOS-HFET fabricated on 7.3 µm epilayer with a thin (50 nm) u-GaN channel layer on highly resistive carbon-doped GaN (C-GaN) achieved over 1.71 kV with the gate-drain length (L_{gd}) of 18 μ m as shown in Fig. 2. This transistor has 40-nm SiO₂ formed by Capacitive Coupled Plasma (CCP)-CVD as the gate insulator and shows a good normally-off operation with the threshold voltage of 2.0 V and the maximum fieldeffect mobility of 102 cm²/Vs. Furthermore, we confirmed that gate field structure is effective for AlGaN/GaN hybrid MOS-HFETs to suppress the current collapse

To improve the properties of GaN MOSFET, a high quality gate insulator is required. SiO₂ and Al₂O₃ are good candidates as the gate insulators of GaN MOSFETs since these insulators have large direct wide bandgaps, a large conduction band offsets and a valence band offsets on GaN, respectively. We have first investigated the formation process of SiO2 films by Microwave (2.45 GHz: MW) Plasma Enhanced Chemical Vapor Deposition (PECVD), LP (Low Pressure)-CVD, and CCP-CVD for the gate insulator of GaN MOS devices. MW plasma is capable of exiting a low-electron temperature and a highplasma density at the substrate surface position. The SiO₂ films were deposited below 400°C by the MW-PECVD and the CCP-CVD and at 800°C by the LP-CVD. As the results, the GaN MOS capacitor with MW-PECVD SiO₂ has shown the lowest interface state density (D_{ii}) of SiO₂/GaN with 4.5×10^{11} cm⁻²eV⁻¹, the highest breakdown electric field with over 11 MV/cm, and the largest chargeto-breakdown (Q_{bd}) with over 1 C/cm², respectively, of these GaN MOS capacitors. However, the D_{it} is still higher compared with Si devices. So, we applied Al_2O_3 to

the gate insulator of GaN MOS devices. The GaN MOS capacitor with Al₂O₃ has a low D_{it} with 2.3×10¹¹ cm⁻²eV⁻¹ by suppressing the Ga diffusion to gate insulator. However, it has a low breakdown electric field with below 7 MV/cm. From the both advantages of MW-PECVD SiO₂ and Al₂O₃, SiO₂/Al₂O₃ stacked structure has been employed for good interface property and a high insulating in GaN MOS devices. In this experiment, 3 nm Al₂O₃ formed on GaN and then 50 nm SiO₂ was deposited on Al₂O₃. Fig. 3 shows the D_{it} of SiO₂/Al₂O₃/GaN, Al_2O_3/GaN and SiO_2/GaN , respectively. The D_{it} of SiO₂/Al₂O₃/GaN is almost the same as Al₂O₃/GaN. The GaN MOS capacitor with SiO₂/Al₂O₃ stacked structure shows a low D_{it} as well as Al₂O₃. The MOS capacitor also exhibits a high-breakdown field, and a high Q_{bd} as well as MW-PECVD SiO₂, respectively.

Furthermore, we have fabricated AlGaN/GaN hybrid MOS-HFETs with the SiO₂/Al₂O₃ gate stack and the MW-PECVD SiO₂ gate insulator and compared the properties of these transistors. Both MOS-HFETs show good normally-off operation with the threshold voltage of 4.2 V. The on-state characteristic of MOS-HFET with the SiO₂/Al₂O₃ is superior to that with MW-PECVD SiO₂. The maximum field-effect mobility of MOS-HFET with the SiO₂/Al₂O₃ is 192 cm²/Vs, which is superior to that with the MW-PECVD SiO₂ of 161 cm²/Vs.

Fig. 1. Schematic cross section of AlGaN/GaN hybrid MOS-HFET.

Fig. 2. Breakdown characteristics of AlGaN/GaN hybrid MOS-HFET with the Lgd of 18 $\mu m.$

Fig. 3. D_{it} of GaN MOS capacitors with SiO₂, Al₂O₃ and SiO₂/Al₂O₃ calculated from the *C-V* characteristics at 150°C.