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Lithium-oxygen (Li-O2) batteries are a potential 
alternative to conventional combustion technologies in the 
mobility sector. Two possible solvent systems are in the 
focus of extensive research at the moment. Namely, 
systems with aprotic and aqueous electrolyte [1]. 
Major challenges in the development of Li-O2 systems 
arise from the formation of solid discharge products. In 
the cathode of aprotic Li-O2 batteries Li2O2 is formed 
during discharge. Li2O2 has a low electric conductivity [2] 
and passivates active surfaces. Additionally it may block 
pore space and hamper the transport of reactants [3]. In 
the case of a low solubility and diffusivity of O2 in the 
liquid electrolyte, e.g. ionic liquids, this becomes an 
important capacity and power limitation. 
Aqueous electrolytes offer an interesting alternative as 
gas diffusion electrodes (GDEs) allow to overcome O2 
transport limitations. During discharge the solid reaction 
product LiOH·H2O precipitates at concentrations above 
the solubility limit (cs=5.3 mol/l). This causes capacity 
limitations due to restricted mass transport similar to the 
aprotic case. A main challenge is to find a stable 
protective layer for the Li metal electrode. Li reacts 
vigorously with water which causes major security risks 
and makes experimental studies on a full cell a difficult 
task. Therefore, the system is an ideal candidate to be 
studied in numerical simulations. 
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Figure 1: IV curves in LiOH solution. Symbols: half-cell 
experiments; solid lines: numerical simulations. 
 
Here we present a detailed numerical modeling and 
experimental validation study of aqueous Li-O2 cells. The 
simulations are based on a 1D multi-phase modeling 
framework presented previously [4]. The framework is 
capable of describing the formation and transport of 
multiple gaseous, liquid and solid phases in aqueous and 
aprotic Li-O2 batteries. We model capillary-pressure 
driven transport of the aqueous electrolyte in the GDE [5]. 
The parameters stem from in-house half-cell experiments 
and from the literature. Cyclic voltammograms (Figure 1) 
and electrochemical impedance spectra (Figure 2) were 
measured with a three-electrode setup in LiOH solutions. 
Our transport and reaction model was successfully 
validated over a wide range of temperatures and 
concentrations (Figure 1 and 2). 
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Figure 2: Nyquist plots of impedance spectra measured in 
1 M LiOH solution at a polarization of 800 mV vs. RHE.  
 
Precipitation of solid LiOH·H2O is modeled via the 
classical theory of nucleation and growth. LiOH·H2O can 
either form heterogeneously on the surface or 
homogenously on nucleation centers in the bulk of the 
solution. This gives rise to several possible electrode and 
cell designs which offer an improved battery capacity. We 
evaluate and optimize different cell design concepts, 
including flooded electrode, gas diffusion electrode, 
porous separator, and bulk separator, under various 
operation conditions (Figure 3). 
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Figure 3: Energy density for different cell configurations 
of Li-O2 batteries with aqueous electrolyte. The optimal 
configuration depends on the operating conditions.  
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