Low Cost Na-ion Battery Technology

J. Barker, R.J. Heap, N. Roche, C. Tan, R. Sayers and Y. Liu
Faradion Limited
Kroto Innovation Centre
University of Sheffield
Sheffield S3 7HQ
United Kingdom

Sodium-ion (Na-ion) batteries represent an attractive alternative to their lithium-ion counterparts, and are expected to offer some significant commercial advantages such as lower materials costs and improved safety characteristics [1,2]. Until recently the problem with the practical realization of sodium-based systems has been the limited availability of suitable anode (negative) and cathode (positive) electrode materials that may reversibly cycle sodium ions [3,4].

In this study we demonstrate the performance characteristics of Na-ion cells constructed using a hard carbon anode material coupled to a proprietary layered oxide cathode electrode. In Figure 1 we depict the voltage profile derived from a typical constant current charge-discharge cycle. These data were collected at 25 °C using a C/10 rate for both charge and discharge. The cathode material cycles reversibly at a specific capacity of 143 mAh/g and cell generates an average discharge voltage of around 3.0 V.

Figure 2 shows a typical cycle life plot for a representative Na-ion cell. These data were collected at 25 °C at a C/10 charge/discharge rate using voltage limits of 4.2 and 1.0 V. Following 90 cycles the cell has retained over 93% of the original discharge capacity. This cycling performance is similar to the capacity fade behavior encountered in commercial Li-ion cells.

The rate performance for a typical Na-ion cell is shown in Figure 3. These data were collected at 25 °C. At the 5C discharge rate the cell retains more than 50% of its rated discharge capacity. We consider this to be encouraging rate characteristics for a test cell which was designed for energy applications and was not optimized for rate performance.

Further performance data for the Na-ion system will be presented.

References: