Photoluminescence of Li⁺ and Eu³⁺ co-doped NaLa (WO₄)₂ as near-UV excited red phosphors

<u>Ying Liu^{a,b}</u>, Ying-Ying Gu^b, Zhou-Guang Lu^{<u>a,b</u>,*}

- a. Department of Micro-Nano Materials and Devices, South University of Science and Technology of China, Shenzhen, Guangdong 518055, P.R. China. E-mail: luzg@sustc.edu.cn
- b. College of Chemistry and Chemical Engineering, Central South University, Yuelu Campus, Changsha, Hunan 410083, P.R. China

A series of Li⁺ and Eu³⁺ co-doped double tungstate NaLa(WO₄)₂ (NLW) red phosphors have been successfully synthesized by an hydrothermal assisted ion exchange method. The effects of Li⁺ doping concentration on the crystal structure, morphology and photoluminescence properties were investigated by using XRD, TEM and photoluminescence (PL) measurement. The results reveal that the samples have phase-pure scheelite structure and adopt spherical particle morphology. A certain concentration of ${\rm Eu}^{3 \scriptscriptstyle +}$ and ${\rm Li}^{\scriptscriptstyle +}$ ions can be availably doped into the crystal lattice of NaLa(WO₄)₂ and did not change the scheelite structure. Room temperature photoluminescence spectrum showed that these phosphors can be excited effectively by a near UV light of 396 nm leading to bright emission characteristic red (613 nm) spectrum. The emission brightness and the excitation under near-UV light illumination were obviously enhanced after the doping of Li⁺. Furthermore, the optical brightness is highly dependent on the concentration of doping Li⁺ which is determined by ion exchange duration and the precursor concentration of LiNO3. As 5% Li⁺ ions was introduced into the crystal lattice, the emission intensity was enhanced by more than 10-fold as compared with the pristine one. Thus, the prepared Li⁺ and Eu³⁺ co-doped NaLa (WO₄)₂ is kind of very promising red phosphors that are suitable for application in near-UV type LEDs.

Acknowledgments

This work was supported by the Natural Science Foundation of Shenzhen and the Starting Up Funds of South University of Science and Technology of China.