3-D Numerical Analysis of Solid Oxide Electrolysis Cell (SOEC) With Co-Electrolysis Operation

Juhyun Kang¹, Joongmyeon Bae¹

Korea Advanced Institute of Science and Technology

¹Department of Mechanical Engineering, KAIST, 335 Ghwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea

Solid Oxide Electrolysis Cell (SOECs) are energy conversion system using reversible processes of Solid Oxide Fuel Cells (SOFCs) to produce H_2 by applying electricity. Due to its high operating temperature (600-1,000) characteristics, these can produce syn-gas (H_2 and CO) by electrolyzing H_2O and CO_2 simultaneously, and this operation mode is called as co-electrolysis mode. Because syngas can be used as a fuel for SOFC directly or can be converted to hydrocarbon fuels through a Fischer-Tropsch process, many groups research about SOEC coelectrolysis mode¹⁻⁴. To operate SOEC co-electrolysis mode efficiently, numerical analysis is required to find main parameters of electrochemical performance.

In this research, 3-D simulation model is developed to simulate SOEC co-electrolysis mode. Electrochemical reactions (H_2O and CO_2 electrolysis reactions) are calculated in a domain of cathode triple phase boundary (TPB) layer, and chemical reactions (WGS, SR, and DSR) are calculated in a domain of cathode electrode. Developed model is validated by comparing to experimental data.

Numerical analysis of SOEC co-electrolysis is done with validated model. Cathode inlet gas composition, temperature, and cathode flow rate are considered as operating conditions related to electrochemical and chemical performance of SOEC co-electrolysis mode. To identify main parameters, various operating conditions is applied. Among many parameters, H₂O fraction of cathode inlet gas is considered as a main parameter forx electrochemical performance of SOEC co-electrolysis.

Acknowledgement

This work was supported by the Institutional Research Program of the Korea Institute of Science and Technology (2V02182) and the Global Frontier R&D Program on Center for Multiscale Energy System funded by the National Research Foundation under the Ministry of Science, ICT & Future, Korea(2011-0031568)

Reference

- 1. Ni, Meng, 2D thermal modeling of a solid oxide electrolyzer cell (SOEC) for syngas production by H_2O/CO_2 co-electrolysis, International Journal of Hydrogen Energy, Volume 37, Issue 8, Pages 6389-6399, April 2012
- Becker, W.L.; Braun, R.J.; Penev, M.; Melaina, M., Production of Fischer–Tropsch liquid fuels from high temperature solid oxide co-electrolysis units, Energy, Volume 47, Issue 1, Pages 99-115, November 2012
- 3. Ni, Meng, An electrochemical model for syngas production by co- electrolysis of H₂O and CO₂, Journal of Power Sources, Volume 202, Pages 209-216, March 2012
- 4. Li, Wenying ; Wang, Hongjian ; Shi, Yixiang ; Cai, Ningsheng, Performance and methane production characteristics of H₂O–CO₂ co-electrolysis in solid

oxide electrolysis cells, International Journal of Hydrogen Energy, Volume In Press, Corrected Proof, February 2013