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Pseudopotentials– empirical and ab initio – are now being 
more commonly used to study not only the atomic and 
electronic structure of nanometer-scale systems, but also 
their electronic transport properties. Here we shall give a 
bird’s-eye view of the use of density functional theory 
(DFT) to calibrate empirical pseudopotentials (EPs), of 
EPs to calculate efficiently the electronic structure of low-
dimensionality systems, the most significant electronic 
scattering processes, and to study semiclassical electronic 
transport. Low-dimensionality systems considered here 
include thin semiconductor layers, graphene, graphene- 
and silicane-nanoribbons, and silicon nanowires. 
Regarding graphene, the high electron mobility measured 
in suspended graphene sheets1 (~200,000 cm2/Vs, as seen 
in the theoretical results shown in Fig. 2) is the result of a 
relatively weak carrier-phonon coupling and the strong 
dielectric-screening property. However, in practical 
applications graphene is likely to be supported by an 
insulating substrate, top-gated, and possibly used in the 
form of narrow armchair-edge nanoribbons (AGNRs) in 
order to open a gap. We will discuss several scattering 
processes which may affect electron transport in these 
situations. First, we shall present results of the calculation 
of the intrinsic electron-phonon scattering rates in 
suspended graphene and AGNRs using empirical 
pseudopotentials2 and the rigid-ion approximation3 or 
DFT calculated deformation potentials4 (see Fig. 1), 
resulting in an electron mobility consistent with the 
experimental results (as shown in Figs. 2 and 3). We shall 
then discuss the role of interfacial coupled substrate 
optical-phonon/graphene-plasmons5 (i.e., remote 
phonons) in depressing the electron mobility in graphene 
supported by SiO2, HfO2, Al2O3, and h-BN, as shown in 
Fig. 4. Finally, we shall review the strong effect of line 
edge roughness (LER) on electron transport (Fig. 5) and 
localization in narrow AGNRs6 resulting from the 
`aromatic’ width dependence of the band-gap of the sp2-
coordinated AGNRs. This will lead us to consider sp3-
coordinate ribbons (silicane) and Si nanowires as possible 
alternative structures -- less affected by LER scattering -- 
of interest in nano-electronics application.  

 

Fig. 1 Left: Electron-phonon scattering rates in suspended 
graphene at 300K calculated using EPs and the rigid-ion 
approximation. Right. Electron momentum relaxation rate 
in AGNRs of various width calculated using DFT-
determined deformation potentials, as in Ref. 4. 

  
Fig. 2 Electron drift velocity vs. field (left) and 
longitudinal mobility vs. field calculated from the rates 
shown in Fig. 1 (left) at various values of the electron 
density.  

 
Fig. 3 Electron mobility in AGNRs of various widths 
calculated using the momentum relaxation rates shown in 
Fig. 1 (right). 

 
Fig. 4 Calculated remote-phonon-limited electron 
mobility in graphene supported by the insulators shown.   

 
Fig. 5 Electron-LER scattering rates in AGNRs. Note the 
magnitude of the rates which show the breakdown of 
perturbation theory and suggest electron localization.. 
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