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Pseudopotentials— empirical aallinitio — are now being
more commonly used to study not only the atomic and
electronic structure of nanometer-scale systemsalso
their electronic transport properties. Here we Ishiae a
bird's-eye view of the use of density functionakdhny
(DFT) to calibrate empirical pseudopotentials (ERX)
EPs to calculate efficiently the electronic struetaf low-
dimensionality systems, the most significant etsot
scattering processes, and to study semiclassieetrehic
transport. Low-dimensionality systems considerede he
include thin semiconductor layers, graphene, gnaghe
and silicane-nanoribbons, and silicon nanowires.
Regarding graphene, the high electron mobility mess

in suspended graphene sh&€t200,000 crfiVs, as seen

in the theoretical results shown in Fig. 2) is tesult of a
relatively weak carrier-phonon coupling and theorsty
dielectric-screening property. However, in pradtica
applications graphene is likely to be supported doy
insulating substrate, top-gated, and possibly usethe
form of narrow armchair-edge nanoribbons (AGNRS) in
order to open a gap. We will discuss several stagfe
processes which may affect electron transport eséh
situations. First, we shall present results ofdaleulation

of the intrinsic electron-phonon scattering rates i
suspended graphene and AGNRs using empirical
pseudopotentiafsand the rigid-ion approximatidnor
DFT calculated deformation potential§see Fig. 1),
resulting in an electron mobility consistent withet
experimental results (as shown in Figs. 2 and 3).shall
then discuss the role of interfacial coupled sulbstr
optical-phonon/graphene-plasmons  (i.e., remote
phonons) in depressing the electron mobility inpbene
supported by Si¢) HfO,, Al,O;, and h-BN, as shown in
Fig. 4. Finally, we shall review the strong effedtline
edge roughness (LER) on electron transport (Figaris)
localization in narrow AGNRs resulting from the
“aromatic’ width dependence of the band-gap ofsjife
coordinated AGNRs. This will lead us to considpr-
coordinate ribbons (silicane) and Si nanowiresassiple
alternative structures -- less affected by LERteciaiy --

of interest in nano-electronics application.
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Fig. 1 Left: Electron-phonon scattering rates in suspended
graphene at 300K calculated using EPs and the-iagid
approximationRight. Electron momentum relaxation rate
in AGNRs of various width calculated using DFT-
determined deformation potentials, as in Ref. 4.
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Fig. 2 Electron drift velocity vs. field (left) and
longitudinal mobility vs. field calculated from thates

shown in Fig. 1 (left) at various values of thectlen

density.
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Fig. 3 Electron mobility in AGNRs of various widths
calculated using the momentum relaxation rates show
Fig. 1 (right).
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Fig. 4 Calculated remote-phonon-limited electron
mobility in graphene supported by the insulatossin
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Fig. 5 Electron-LER scattering rates in AGNRs. Note the

magnitude of the rates which show the breakdown of
perturbation theory and suggest electron locabpati
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