Formation of a bilayer of low-temperature CVD-SiO$_2$ and sputtered Al$_2$O$_3$ films on polyethylene terephthalate substrates for an OLED encapsulation layer

Hyuk Jin Kim1,2, Sang hyun Park3, Yoon Jung Kim1,2, Hong Woo Lee1,2, Seungha Oh1 and Hyeong Joon Kim1

1Department of Materials Science and Engineering, Inter-university Semiconductor Research Center, Seoul National University, Seoul 151-742, Republic of Korea
2Development Center (LCD), Samsung Display, Asan-city 336-741, Republic of Korea

Organic light-emitting diode (OLED) devices have promising potential for flat-panel display to replace liquid crystal displays (LCDs). The limited lifetime of OLED is a major drawback for its commercial applications such as TV and monitor. Since the organic materials and low work-function metals used in OLEDs are sensitive to moisture, OLED displays are easily degraded in humid environment. Encapsulation with organic or inorganic thin films has been actively investigated to fulfill a requirement of low water permeability ($< 10^{-6}$ g/m2·day). Recently, multilayers of inorganic thin films have been proposed for the encapsulation of OLEDs using various deposition methods such as sputtering, atomic layer deposition (ALD), and chemical vapor deposition (CVD).[1-5].

In this study, we prepared a single-layer barrier of sputtered Al$_2$O$_3$ and a bilayer barrier consisting of CVD SiO$_2$ and sputtered Al$_2$O$_3$ as a potential moisture barrier for an OLED encapsulation. Sputtered Al$_2$O$_3$ films were prepared at room temperature using an RF magnetron sputtering system (CS5000, SNTek Co.). The process pressure and Ar flow rate were 5 mTorr and 10 sccm, respectively. The RF power of Al$_2$O$_3$ target was 150 W. For the bilayer barrier, the CVD SiO$_2$ thin films were formed at 100°C using tris(ethyl-methyl-amino)silane (TEMS, HSi[(CH$_3$)$_2$CH](CH$_3$)$_3$)] and O$_2$ as a Si precursor and oxidant gas, respectively.

Figure 1 shows the Fourier transform infrared spectroscopy (FTIR) spectra of CVD SiO$_2$ layer. Absorbance bands at 1070 cm$^{-1}$ and 800 cm$^{-1}$ are ascribed to the stretching and bending vibrations of Si-O-Si, respectively. The peak at 950 cm$^{-1}$ has been reported to be associated with the stretching mode of Si-OH. The absorbance band at 880 cm$^{-1}$ is assigned to the bending modes of H-SiO$_2$, indicating that CVD SiO$_2$ contains small amount of –OH radicals. Since CVD SiO$_2$ with –OH radicals exhibits a flowable behavior, the CVD-SiO$_2$ film exhibits a conformal gap-filling at the acute angle region between the silica particle and the substrate, as shown in Fig. 2. Because the conformal gap-filling behavior of CVD SiO$_2$ enhanced the blocking of the pin holes or cracks of sputtered Al$_2$O$_3$ layer, the bilayer barrier with CVD-SiO$_2$ layer and sputtered Al$_2$O$_3$ layer reduced the water permeation compared to the Al$_2$O$_3$ single-layer barrier, as shown in Fig. 3. The bilayer with the 100 nm thick Al$_2$O$_3$ and the 100 nm thick CVD-SiO$_2$ exhibits lower water vapor transmission rate (WVTR) (0.214 g/m2·day) than the 200 nm thick sputtered Al$_2$O$_3$ single-layer (0.325 g/m2·day), although both barriers have the same thickness.

In summary, the encapsulation bilayer with CVD SiO$_2$ and sputtered Al$_2$O$_3$ layers was studied to reduce the moisture permeation through PET film. Even though the WVTR (0.214 g/m2·day) of the bilayer barrier is much lower than the target value (10^{-6} g/m2·day) of the OLEDs, the inorganic bilayer barrier of OLEDs with different materials and different deposition methods makes it possible to reduce the water permeation to OLEDs. Especially the gap-filling property of flowable CVD-SiO$_2$ plays the key role in a surface planarization and blocking of surface defects.

References

Fig. 1. The FTIR spectra of CVD-SiO$_2$ film.

Fig. 2. Cross-sectional SEM image showing the coverage of CVD-SiO$_2$ film at the acute angle underneath a silica particle.

Fig. 3. The comparison of the WVTR of the single-layer and bilayer barriers.