Formation of a bilayer of low-temperature CVD-SiO₂ and sputtered Al₂O₃ films on polyethylene terephthalate substrates for an OLED encapsulation layer

Hyuk Jin Kim^{1,2}, Sang hyun Park¹, Yoon Jang Kim^{1,2}, Hong Woo Lee^{1,2}, Seungha Oh¹ and Hyeong Joon Kim¹

¹Department of Materials Science and Engineering, Inter-university Semiconductor Research Center, Seoul National University, Seoul 151-742, Republic of Korea ²Development Center (LCD), Samsung Display, Asan-city 336-741, Republic of Korea

Organic light-emitting diode (OLED) displays have promising potential for flat-panel display to replace liquid crystal displays (LCDs). The limited lifetime of OLED is a major drawback for its commercial applications such as TV and monitor. Since the organic materials and low work-function metals used in OLEDs are sensitive to moisture, OLED displays are easily degraded in humid environment. Encapsulation with organic or inorganic thin films has been actively investigated to fulfill a requirement of low water permeability (< 10^{-6} g/m²·day). Recently, multilayers of inorganic thin films have been proposed for the encapsulation of OLEDs using various deposition methods such as sputtering, atomic layer deposition (ALD), and chemical vapor deposition (CVD).[1-5].

In this study, we prepared a single-layer barrier of sputtered Al_2O_3 and a bilayer barrier consisting of CVD SiO₂ and sputtered Al_2O_3 as a potential moisture barrier for an OLED encapsulation. Sputtered Al_2O_3 films were prepared at room temperature using an RF magnetron sputtering system (CS5000, SNTek Co.). The process pressure and Ar flow rate were 5 mTorr and 10 sccm, respectively. The RF power of Al_2O_3 target was 150 W. For the bilayer barrier, the CVD SiO₂ thin films were formed at 100°C using tris(ethyl-methylamino)silane (TEMS, HSi[N(C₂H₅)(CH₃)]₃) and O₃ as a Si precursor and oxidant gas, respectively.

Figure 1 shows the Fourier transform infrared spectroscopy (FTIR) spectra of CVD SiO_2 layer. Absorbance bands at 1070 cm⁻¹ and 800 cm⁻¹ are ascribed to the stretching and bending vibrations of Si-O-Si, respectively. The peak at 950 cm⁻¹ has been reported to be associated with the stretching mode of Si-OH. The absorbance band at 880 cm⁻¹ is assigned to the bending modes of H-SiO₃, indicating that CVD SiO₂ contains small amount of -OH radicals. Since CVD SiO2 with -OH radicals exhibits a flowable behavior, the CVD-SiO₂ film exhibits a conformal gap-filling at the acute angle region between the silica particle and the substrate, as shown in Fig. 2. Because the conformal gap-filling behavior of CVD SiO₂ enhanced the blocking of the pin holes or cracks of sputtered Al₂O₃ layer, the bilayer barrier with CVD-SiO₂ layer and sputtered Al₂O₃ layer reduced the water permeation compared to the Al₂O₃ single-layer barrier, as shown in Fig. 3. The bilayer with the 100 nm thick Al₂O₃ and the 100 nm thick CVD-SiO₂ exhibits lower water vapor transmission rate (WVTR) $(0.214 \text{ g/m}^2 \cdot \text{day})$ than the 200 nm thick sputtered Al₂O₃ single-layer (0.325 g/m²·day), although both barriers have the same thickness.

In summary, the encapsulation bilayer with CVD SiO_2 and sputtered Al_2O_3 layers was studied to reduce the moisture permeation through PET film. Even though the WVTR (0.214 g/m²-day) of the bilayer barrier is much

lower than the target value $(10^{-6} \text{ g/m}^2\text{-}\text{day})$ of the OLEDs, the inorganic bilayer barrier of OLEDs with different materials and different deposition methods makes it possible to reduce the water permeation to OLEDs. Especially the gap-filling property of flowable CVD-SiO₂ plays the key role in a surface planarization and blocking of surface defects.

References

- Y. M. Chung, M. J. Jung, K. H. Nam, J. G. Han, S. H. Baeg, and S. H. Yang, Surf. Coat. Tech., 171, 65 (2002).
 H. K. Kim and C. K. Cho, Nanoscale Res. Lett., 7, 69
- (2012). [3] M. C. Lin, C. H. Tseng, L. S. Chang, and D. S. Wuu,

Thin Solid Films, 515, 4596 (2007).

[4] M. Groner, S. George, R. McLean, and P. Carcia, Appl. Phys. Lett., 88, 051907 (2006).

[5] P. Carcia, R. McLean, M. Reilly, M. Groner, and S. George, Appl. Phys. Lett., 89, 031915 (2006).

Fig. 1. The FTIR spectra of CVD-SiO₂ film.

Fig. 2. Cross-sectional SEM image showing the coverage of CVD-SiO_2 film at the acute angle underneath a silica particle.

Fig. 3. The comparison of the WVTR of the single-layer and bilayer barriers.