A Study on Electrochemical Reaction Mechanism of RuO₂ Using Synchrotron Based X-Ray Techniques.

Yunok Kim¹, Hyunchul Kim¹, Kowsalya Palanisamy¹, Oh Woong¹, Wontae Lee¹, Won-Suk Yoon¹, ²
¹Department of Energy Science, Sungkyunkwan University, Suwon 440-746, South Korea
²Correspond by: wysyoon@skku.edu

Abstract

Recently, various transition metal oxides (M= Fe, Ni, Co, Cu) have been studied as alternative anode materials for lithium ion batteries. Focusing on the higher energy density of anode materials, reinvestigation of conversion reaction in Li-ion battery using a representative material RuO₂ has shown an important evolution in the reaction mechanism. Ruthenium oxide is well known as anode material for its high capacity (1130mAh/g) and high coulombic efficiency (98%, at the first cycle). RuO₂ stored 5.6M Li during the first discharge. Li up to 4mol per mole RuO₂ is stored by the insertion and conversion reaction. Generally, additional capacity of RuO₂ explained is related to the interfacial reaction¹,².

Although electrochemical reaction mechanism of RuO₂ is suggested in previous report, it is still difficult to prove the mechanism perfectly. For explaining the additional capacity, it is important to know the insertion and conversion reaction clearly. In this work, we have tried to explain the electrochemical reaction mechanism of RuO₂ by using in situ X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) during first discharge.

Ruthenium oxide powder is purchased from Alfa and annealed in air at 350°C. The working electrode was consisted of annealed RuO₂ powder, polyvinylene difluoride (PVDF) in 10 : 1 weight ratio. In situ cell is assembled with Li foil, Celgard separator, and 1.3M LiPF₆ dissolved in a 3:7 volume mixture of EC (ethylene carbonate): DEC (diethyl carbonate) in the argon-filled glove box.

This electrochemical reaction mechanism is studied by in situ XRD pattern. Appearance of new peak could be attributed to formation of Li₄RuO₄ phase and at the same time, RuO₂ phase disappears during discharge in the Fig 1(a). The change of XRD pattern is reflected in the results of insertion reaction.

We tried to combine in situ XAS for getting closer insight into the reaction mechanism. After insertion reaction, there is an appearance of Ru metal peak which is due to effect of conversion reaction.

This study suggests that, Li storage in RuO₂ takes place via phase transformations. RuO₂ transformed into Li₄RuO₄ by Li insertion, intermediate LiRuO₂ turns to Li₂O and Ru metal by conversion reaction. It is clearly evidenced by the in situ XRD, XAS studies.

The more detailed mechanism of RuO₂ during discharge will be presented at the time of meeting.

Fig.1 (a) in situ XRD, (b) in situ EXAFS pattern (Fourier transforms(FTs) of the K² weighted Ru K-edge, FT range is 2.0 – 13.8Å⁻¹) during the first discharge at constant current density 100mA/g, voltage range : 0.05-4.3V.

Reference