FeSn₅ and CoSn₅ new phases and their applications as high-performance anodes for Li-ion batteries

Wei-Qiang Han, Xiaoliang Wang¹, Feng-Xia Xin

Ningbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China e-mail: hanweiqiang@nimte.ac.cn¹ Present address: Seeo Inc., 3906 Trust Way, Hayward, CA 94545

We prepared uniform nanospheres (Figure 1) of the intermetallic FeSn₅ and CoSn₅ phases by a nanocrystal conversion-chemistry method. We resolved the crystal structures of FeSn5 and CoSn₅, which were not established in the existing Fe-Sn and Co-Sn phase diagram. Both FeSn₅ and CoSn₅ nanospheres have tetragonal phase in P4/mcc space group. FeSn₅ nanospheres have the defect structure Fe_{0.74}Sn₅, whose 929 mAh g^{-1} theoretical capacity is the highest to date for the reported M (electrochemically inactive)-Sn intermetallic anodes. The cell performance of Fe0.74Sn5 nanospheres as an anode in Li-ion batteries has been studied. The measured capacity of $Fe_{0.74}Sn_5$ is around 750 mAh g⁻¹ (Figure 2). As anodes in Li-ion batteries, Co_{0.83}Sn₅ has a theoretical capacity of 917 mAh g⁻¹; our nanospheres exhibit a relative stable capacity above 500 mAh g⁻¹. The change in the cycling profiles of the Co_{0.83}Sn₅ anode is much less pronounced than that of the Fe_{0.74}Sn₅ anode, so partially explaining why the cycling stability of $Co_{0.83}Sn_5$ is better.

Our work has two major implications: (1) Nanocrystal conversion-chemistry affords a powerful "bottom-up" approach to generate novel phases that are difficult to realize via other synthetic strategies; (2) the identical morphology and uniform size of $Co_{0.83}Sn_5$ and $Fe_{0.74}Sn_5$ nanospheres guarantee the validity of directly comparing their anode performance, so paving the way to identify which Sn-M alloy performs better.

This work is supported by the Project of the Ningbo 3315 International Team of Advanced Energy Storage Materials.

Figure 1. a) SEM image, and b) TEM image of FeSn₅ nanosphere.

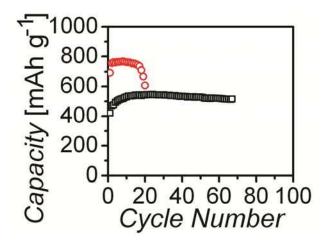


Figure 2. Reversible capacities of the $Co_{0.83}Sn_5$ nanospheres and the $Fe_{0.74}Sn_5$ nanospheres upon cycling.