Crystal Structure and Electrochemical Properties of Li_{2-x}Na_x*M*[PO₄]F (*M*= Mn, Fe, Co, Ni, and Mg)

<u>Hamdi Ben Yahia</u>, Masahiro Shikano, Hikari Sakaebe, Shinji Koike, Mitsuharu Tabuchi, Kuniaki Tatsumi, Hironori Kobayashi.

Research Institute for Ubiquitous Energy Devices, AIST, 1-8-31Midorigaoka, Ikeda, Osaka 563-8577, Japan. e-mail: benyahia.hamdi@aist.go.jp

During the last decade, the $(Li,Na)_2M[PO_4]F$ (M= Mn-Ni) fluorophosphates have attracted much attention due to their potential use as positive electrode material in either Li-ion or Na-ion cells. Recently, our research group started systematic studies on the crystal/electronic-structures and the magnetic/electrochemical properties of the intermediate phases LiNa $M[PO_4]F$ (Fig. 1).¹⁻⁵

Pnma Pnma	10.7874	6 2196	11 1700			
Duna		0.2170	11.1/80		749.97	1
гтти	10.9334	6.2934	11.3556		781.36	2
Pnma	10.9851	6.3686	11.4343		799.94	3
Pnma	10.5108	6.4996	11.0504		754.92	4
Pnma	10.9719	6.3528	11.4532		798.31	5
Pnma	10.5773	6.2378	10.9297		721.10	*
$P2_{1}/c$	6.8179	11.2234	5.0222	90.00	384.30	*
$P2_{1}/c$	6.7720	11.1540	5.0210	90.00	379.26	1
$P2_{1}/c$	6.8654	11.8753	5.30702	90.00	432.70	*
$P2_{1}/c$	13.4581	5.1991	13.6978	120.58	825.14	1
	Pnma Pnma Pnma P21/c P21/c P21/c P21/c P21/c	Pnma 10.9851 Pnma 10.5108 Pnma 10.9719 Pnma 10.5773 P21/c 6.8179 P21/c 6.8654 P21/c 13.4581	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Pnma 10.9851 6.3686 11.4343 Pnma 10.5108 6.4996 11.0504 Pnma 10.9719 6.3528 11.4532 Pnma 10.5773 6.2378 10.9297 P2 ₁ /c 6.8179 11.2234 5.0222 P2 ₁ /c 6.7720 11.1540 5.0210 P2 ₁ /c 6.8654 11.8753 5.30702 P2 ₁ /c 13.4581 5.1991 13.6978	Pnma 10.9851 6.3686 11.4343 Pnma 10.5108 6.4996 11.0504 Pnma 10.9719 6.3528 11.4532 Pnma 10.5773 6.2378 10.9297 P2 ₁ /c 6.8179 11.2234 5.0222 90.00 P2 ₁ /c 6.7720 11.1540 5.0210 90.00 P2 ₁ /c 6.8654 11.8753 5.30702 90.00 P2 ₁ /c 13.4581 5.1991 13.6978 120.58	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Fig. 1. Crystal structures of the $A_2M[PO_4]F$ compounds (A = Li, Na and M = Mn-Ni, Mg). Those highlighted in red have been discovered in our research group [1-5].

LiNaFe[PO₄]F (M = Fe), is the most attractive because of its electrochemical activity as an electrode material. As shown in Fig. 2, three oxidation peaks at 3.6 V, 3.9 V, and 4.37 V appear on the cycle voltammogram and they correspond to Fe²⁺/Fe³⁺ redox couples because the alkali metal atoms occupy three different crystallographic sites. To our knowledge, the 4.37 V is the highest value observed for Fe²⁺/Fe³⁺ redox couple. It does not correspond to Fe³⁺/Fe⁴⁺ redox couple, since the ⁵⁷Fe Mössbauer data collected at 4.5 V shows the presence of 90% of Fe³⁺ and 10% of Fe²⁺.

Fig. 2. Cyclic voltammogram curves of LiNaFe[PO₄]F and LiNaFe_{0.9}Mn_{0.1}[PO₄]F recorded at room temperature, between 1.0 V and 5.1 or 5.5V *vs.* Li⁺/Li, with a scanning rate of 5 mV/s.

The new compounds LiNaFe_{1-x}Mn_x[PO₄]F ($x \le 1/4$, $M = Fe_{1-x}Mn_x$) synthesized by solid state reaction route are isostructural to LiNaFe[PO₄]F however, strong differences in the electrochemical behaviors have been observed. Indeed, the substitution of Mn for Fe induces a severe decrease of the electrochemical performances (Fig. 2), that is, three peaks of Fe²⁺/Fe³⁺ redox couple drastically decrease. This behavior is attributed to the electrochemically inactive manganese.

Acknowledgement

Part of this work was financially supported by the Japan Society for the Promotion of Science (JSPS) in Japan.

References

[1] H. Ben Yahia, M. Shikano, K. Tatsumi, S. Koike, H. Kobayashi, *Dalton Trans.* **41** (2012) 5838-5847.

[2] H. Ben Yahia, M. Shikano, S. Koike, K. Tatsumi, H. Kobayashi, H. Kawaji, M. Avdeev, W. Miiller, C.D. Ling, J. Liu, M.-H. Whangbo, *Inorg. Chem.* **51** (2012) 8729-8738.

[3] H. Ben Yahia, M. Shikano, H. Sakaebe, S. Koike, M. Tabuchi, H. Kobayashi, H. Kawaji, M. Avdeev, W. Miiller, C.D. Ling, *Dalton Trans.* **41** (2012) 11692-11699.

[4] H. Ben Yahia, M. Shikano, S. Koike, H. Sakaebe, M. Tabuchi, H. Kobayashi, *J. Power Sources* (2013), 10.1016/j.jpowsour.2013.03.128.

[5] H. Ben Yahia, M. Shikano, H. Sakaebe, H. Kobayashi, *Mater. Chem. Phys.* (2013) in press.