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Magnesium battery is a promising candidate for 

the next generation battery systems.1 This battery 
however suffers from a low cell voltage and capacity. 
Much attention is inclined towards the positive electrode 
(cathode) as its performance is predominantly hampered 
by the aforementioned problems. Olivine-structured 
magnesium compounds are amongst viable cathode 
materials for magnesium battery, owing to their high 
theoretical capacity nearing 300 mAhg-1.2 The high 
capacity coupled with the high voltage in olivine-type 
magnesium compounds can bypass the bottlenecks of 
magnesium battery cathode materials. NuLi et al. 
synthesised MgMSiO4 (where M = Fe, Mn or Co) and 
tested their charge-discharge properties.2-4 They showed a 
remarkably high discharge capacity of MgMSiO4 at an 
average voltage of around 1.8 V versus magnesium. Ling 
et al. calculated the voltage for magnesium insertion/ 
extraction in olivine-type MgMSiO4 by the first-principle 
calculation.5 The reported voltages range from 2.0 V to 
4.2 V versus magnesium, which are relatively higher than 
experimental voltages. Therefore, a higher voltage in 
conjunction with a high capacity can be anticipated, 
although the experimental reports remain unsatisfactory.2-

4 In this study, we applied electrochemical ionic exchange 
from Li2FeSiO4 to MgFeSiO4 to prepare a novel 
LISICON-type magnesium iron silicate as a cathode 
material for magnesium battery. We demonstrate for the 
first time a successful Li-Mg ionic exchange of Li2FeSiO4 
nanoparticles to achieve a new MgFeSiO4 framework 
exhibiting a reversible capacity exceeding 300 mAhg-1 
and at an average voltage of ca. 2.5 V vs. magnesium. 

Li 2FeSiO4/C was prepared via the solid state reaction. 
Stoichiometric amounts of Li2CO3, hydrated FeC2O4, and 
amorphous SiO2 were mixed with carbon (10 wt %).  The 
mixture was milled in a planetary ball mill (Fritsch P6) at 
400 rpm for 24 hours. The precursor was pelletised and 
thereafter calcined at 800oC for 6 hours under Ar 
atmosphere.  The XRD pattern of the pristine Li2FeSiO4 
was fully indexed in the P21/n space group.6 

Composite electrodes were fabricated with 
Li 2FeSiO4/C, Ketjen black and PTFE in a 4:5:1 wt ratio.  
Two electrode flat cells (HS, Hosen) were assembled in 
an Ar-filled glove box.  The counter electrode was lithium 
foil (Honjo) and the two electrodes were separated by 
separator (Celgard #2500). A 1M LiPF6 in ethylene 
carbonate – ethyl methyl carbonate (3: 7 vol %) was used 
as electrolyte. All electrochemical measurements were 
performed at a constant current mode at 55oC.  After the 
prepared cell was charged to 334 mAhg-1 at C/50 rate, the 
cell was disassembled in an Ar-filled glove box. The 

working electrode was washed with ethyl methyl 
carbonate and dried in vacuum. Three electrode cell was 
assembled by using this electrode with a platinum current 
collector.  The counter electrode was magnesium rod and 
the reference electrode was a double junction Ag/Ag+ to 
prevent toxicity that can emanate from magnesium 
electrolyte. 0.5 M Mg-trifuluoromethansulfonyl-imide in 
acetonitrile was used as the electrolyte. Charge and 
discharge measurements were performed at 55oC.  The 
charge-discharge rate was C/50. Charged or discharged 
electrodes were washed with acetonitrile and dried in 
vacuum. The samples were characterised using both X-
ray absorption spectroscopy (XAS) and X-ray diffraction 
(XRD), taking caution not to expose the samples to air.   

Figure 1 shows X-ray absorption near edge 
structure (XANES) at Fe K-edge of Mg1-xFeSiO4 during 
Mg2+ insertion in highly delithiated FeSiO4 using Mg 
electrolyte. A diminution in the oxidation state of Fe 
causes a shift of the absorption edge towards lower 
energy. During discharge reaction, the absorption edge 
shifts towards lower energy indicating unambiguously 
that the charge compensation mechanism during Mg2+ 
insertion occurs via the change in oxidation state of Fe 
ion. This study shows the ability to use Li2FeSiO4 directly 
as a cathode in a Mg-ion battery cell. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 X-ray absorption near edge structure at Fe K-edge 
of Mg1-xFeSiO4 during Mg2+ insertion in highly 
delithiated ‘FeSiO4’  using Mg electrolyte. 
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