LISICON-type Magnesium Iron Silicate as Cathode Material for Magnesium Ion Batteries

<u>Titus Masese</u>^{*a*}, Yuki Orikasa^{*a*}, Kentaro Yamamoto^{*a*}, Takuya Mori^{*a*}, Tetsuya Okado^{*a*}, Zhen-Dong Huang^{*a*}, Taketoshi Minato^{*b*}, Jungeun Kim^{*c*}, Cedric Tassel^{*d*}, Yoji Kobayashi^{*d*}, Hiroshi Kageyama^{*d*}, Yoshiharu Uchimoto^{*a*}

^a Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, JAPAN

^b Office of Society-Academia Collaboration for Innovation, Kyoto University, Gokasho, Uji, Kyoto 611-0011, JAPAN

^c Graduate School of Engineering, Kyoto University, Katsura-cho, Nishikyo-ku, Kyoto 615-8510, JAPAN ^d Japan Synchrotron Radiation Research Institute, 1-1-1

Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, JAPAN

Magnesium battery is a promising candidate for the next generation battery systems.¹ This battery however suffers from a low cell voltage and capacity. Much attention is inclined towards the positive electrode (cathode) as its performance is predominantly hampered by the aforementioned problems. Olivine-structured magnesium compounds are amongst viable cathode materials for magnesium battery, owing to their high theoretical capacity nearing 300 mAhg^{-1.2} The high capacity coupled with the high voltage in olivine-type magnesium compounds can bypass the bottlenecks of magnesium battery cathode materials. NuLi et al. synthesised MgMSiO₄ (where M = Fe, Mn or Co) and tested their charge-discharge properties.²⁻⁴ They showed a remarkably high discharge capacity of MgMSiO₄ at an average voltage of around 1.8 V versus magnesium. Ling et al. calculated the voltage for magnesium insertion/ extraction in olivine-type MgMSiO4 by the first-principle calculation.⁵ The reported voltages range from 2.0 V to 4.2 V versus magnesium, which are relatively higher than experimental voltages. Therefore, a higher voltage in conjunction with a high capacity can be anticipated, although the experimental reports remain unsatisfactory. In this study, we applied electrochemical ionic exchange from Li_2FeSiO_4 to $MgFeSiO_4$ to prepare a novel LISICON-type magnesium iron silicate as a cathode material for magnesium battery. We demonstrate for the first time a successful Li-Mg ionic exchange of Li₂FeSiO₄ nanoparticles to achieve a new MgFeSiO₄ framework exhibiting a reversible capacity exceeding 300 mAhg⁻¹ and at an average voltage of ca. 2.5 V vs. magnesium.

Li₂FeSiO₄/C was prepared via the solid state reaction. Stoichiometric amounts of Li₂CO₃, hydrated FeC₂O₄, and amorphous SiO₂ were mixed with carbon (10 *wt* %). The mixture was milled in a planetary ball mill (Fritsch P6) at 400 rpm for 24 hours. The precursor was pelletised and thereafter calcined at 800°C for 6 hours under Ar atmosphere. The XRD pattern of the pristine Li₂FeSiO₄ was fully indexed in the P2₁/*n* space group.⁶

Composite electrodes were fabricated with Li_2FeSiO_4/C , Ketjen black and PTFE in a 4:5:1 *wt* ratio. Two electrode flat cells (HS, Hosen) were assembled in an Ar-filled glove box. The counter electrode was lithium foil (Honjo) and the two electrodes were separated by separator (Celgard #2500). A 1M LiPF₆ in ethylene carbonate – ethyl methyl carbonate (3: 7 vol %) was used as electrolyte. All electrochemical measurements were performed at a constant current mode at 55°C. After the prepared cell was charged to 334 mAhg⁻¹ at C/50 rate, the cell was disassembled in an Ar-filled glove box. The

working electrode was washed with ethyl methyl carbonate and dried in vacuum. Three electrode cell was assembled by using this electrode with a platinum current collector. The counter electrode was magnesium rod and the reference electrode was a double junction Ag/Ag⁺ to prevent toxicity that can emanate from magnesium electrolyte. 0.5 M Mg-trifuluoromethansulfonyl-imide in acetonitrile was used as the electrolyte. Charge and discharge measurements were performed at 55°C. The charge-discharge rate was C/50. Charged or discharged electrodes were washed with acetonitrile and dried in vacuum. The samples were characterised using both X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD), taking caution not to expose the samples to air.

Figure 1 shows X-ray absorption near edge structure (XANES) at Fe *K*-edge of $Mg_{1-x}FeSiO_4$ during Mg^{2+} insertion in highly delithiated FeSiO₄ using Mg electrolyte. A diminution in the oxidation state of Fe causes a shift of the absorption edge towards lower energy. During discharge reaction, the absorption edge shifts towards lower energy indicating unambiguously that the charge compensation mechanism during Mg^{2+} insertion occurs via the change in oxidation state of Fe ion. This study shows the ability to use Li₂FeSiO₄ directly as a cathode in a Mg-ion battery cell.

Fig.1 X-ray absorption near edge structure at Fe *K*-edge of $Mg_{1-x}FeSiO_4$ during Mg^{2+} insertion in highly delithiated 'FeSiO₄' using Mg electrolyte.

ACKNOWLEDGMENTS

This work was supported in part by Core Research for Evolutional Science and Technology (CREST) program of Japan Science and Technology Agency (JST) in Japan.

References

1. D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich and E. Levi, *Nature*, **407**, 724 (2000).

2. Z. Z. Feng, J. Yang, Y. Nuli, J. L. Wang, X. J. Wang and Z. X. Wang, *Electrochem Commun*, **10**, 1291 (2008).

3. Y. Li, Y. N. Nuli, J. Yang, T. Yilinuer and J. L. Wang, *Chinese Sci Bull*, **56**, 386 (2011).

4. Y. P. Zheng, Y. N. NuLi, Q. Chen, Y. Wang, J. Yang and J. L. Wang, *Electrochim Acta*, **66**, 75 (2012).

5. C. Ling, D. Banerjee, W. Song, M. Zhang and M. Matsui, *J. Mater. Chem.*, **22**, 13517 (2012).

6. C. Sirisopanaporn, A. Boulineau, D. Hazel, R. Dominko, B. Budic, A. R. Armstrong, P. G. Bruce and C. Masquelier, *Inorg. Chem.*, **49**, 7446 (2010).