Improved Operation Characteristics in Charge-Trapping Flash Memory Devices with Engineered Dielectric Stack, SiGe and Junctionless Poly-Si Channels

Kuei-Shu Chang-Liao, Zong-Hao Ye, Li-Jung Liu, and Chun-Yuan Chen

Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.

No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan

30013, R.O.C.

E-mail: <u>lkschang@ess.nthu.edu.tw</u>

Charge-trapping flash (CTF) memory devices with high-k trapping layer have been frequently discussed [1-9]. The programming characteristics of these devices can be enhanced by the high-k charge-trapping layer due to its larger trap density and smaller band offset to Si. However, the retention characteristic is still an issue [7-9] because high-k material suffers lower crystalline temperature and shallower defect level. Therefore, a Si₃N₄/high-k material stacked charge-trapping layer was proposed to improve the retention characteristics, since Si₃N₄ has deeper trap level, higher crystalline temperature and it provides an effective barrier for high-k material such as HfO₂ [10]. Moreover, faster erase speed also can be achieved by its smaller valence band offset for Si₃N₄ to Si. In addition, it was reported that the multi-level cell characteristics can be obtained by inserting Al_2O_3 into Si_3N_4 (i.e. Si_3N_4 / Al₂O₃/Si₃N₄ trapping layer) due to the modulated trapping charge distribution [11]. However, since Si_3N_4 is the major trapping-layer material, the scaling down for device Instead, CTF is limited [12]. devices with Si₃N₄/Al₂O₃/high-k charge-trapping layer is proposed and investigated in this work. Double layers with various high-k films on Si₃N₄ are compared first. Then, triple layers with Si₃N₄/various high-k/HfO₂ are investigated.

Some approaches such as stacked high-ĸ blocking/charge-trapping layers [8,13], stacked tunneling layers [14,15], and the utilization of SiGe buried channel [16-20] have been reported to enhance operation in CTF devices. Among them, the characteristics utilization of SiGe buried channel is considered the most promising for improving the performance and lowering the operation voltage, according to simulations [17,18]. Employing a strained pseudomorphic SiGe layer as a high-mobility channel for MOSFETs has been widely reported. Its easy-fabricating and compatibility are helpful in CTF memory applications. However, relevant experimental results are rarely reported. P-channel CTF devices can be operated by hot-electron injection with junction avalanche to achieve efficient programming [21]. In this work, the operation characteristics as well as the reliability properties of p-channel CTF transistor devices with different Ge contents in SiGe buried channel are experimentally investigated. P/E speeds, retention and endurance of devices with SiGe buried channel are compared to the one with conventional Si-channel.

A stacked Si_3N_4/HfO_2 charge-trapping layer was proposed to improve erase operation and retention for CTF device. The improvement can be attributed to the smaller valence band offset of Si_3N_4 to Si and the higher barrier for electrons detrapping from HfO_2 to Si_3N_4 . Programming and retention characteristics of CTF devices can be further enhanced by inserting Al_2O_3 between Si_3N_4 and HfO_2 as the charge-trapping layer. This is because most of the injecting charges are trapped at Si_3N_4/Al_2O_3 interface and Al_2O_3 also provides a high barrier for electron detrapping. Operation characteristics of p-channel TaN/ Al₂O₃/HfO₂/HfAlO₂/SiO₂/Si MAHOS-type CTF memory devices with different Ge contents in SiGe buried channel are investigated in this work. Compare to those with conventional Si-channel, both programming and erasing speeds are significantly improved by employing a Si_{0.7}Ge_{0.3} buried channel. Satisfactory retention and excellent endurance characteristics up to 10⁶ P/E cycles with 4.1 V memory window show that the degradation on reliability properties, if it exists, is negligible when SiGe buried channel is introduced.

A junctionless (JL) polycrystalline silicon (poly-Si) flash memory device with HfO₂/Si₃N₄ (HN) stacked trapping layer is studied for the first time. Effects of the HN stacked trapping layer on JL and inversion-mode (IM) flash devices are compared. JL device shows faster programming speed than the IM one because of its heavily doped n-channel. Specially, comparable erasing speed of JL device can be achieved by HN stacked trapping layer due to more effective electron de-trapping. JL device with HN stacked trapping layer also shows better retention characteristics and keeps a larger window after 10⁵ programming/erasing cycles, which makes it promising three-dimensional (3-D) for memory integration in the future.

- X. Wang, et al, IEEE Trans. Electron Devices, vol. 51(4), p. 597, 2004.
- [2] Y. N. Tan, et al, IEDM. Tech. Dig., p. 889, 2004.
- [3] X. Wang, et al, IEEE Trans. Electron Devices, vol. 53(1), p. 78, 2006.
- [4] S. Maikap, et al, VLSI Technology, Systems, and Applications, p.1, 2006.
- [5] C. Y. Tsai, et al, IEEE Electron Device Letters, vol. 32(3), p.381, 2011.
- [6] C. H. Lai, et al, VLSI Symp. Tech. Dig., 2005, p. 210.
- [7] Ping-Hung Tsai, et al, IEEE Electron Device Letters, vol. 29(3), p.265, 2008.
- [8] Ping-Hung Tsai, et al, IEEE Electron Device Letters, vol. 30(7), p.775, 2009.
- [9] Gang Zhang, et al, IEDM. Tech. Dig., p.83, 2007.
- [10] Zong-Hao Ye, et al, Microelectronic Engineering, vol. 86, p. 1863, 2009.
- [11] ZongLiang Huo, et al, VLSI Symp. Tech. Dig., p.138, 2007.
- [12] Thomas Melde, et al, Non-Volatile Memory Workshop, p.130, 2008.
- [13] C. Y. Tsai, et al, IEDM Tech. Dig., 2010, p. 110.
- [14] Antonio Arreghini, et al, IEEE Trans. Electron Devices, vol. 55(5), p. 1211, 2008.
- [15] Sheng-Chih Lai, et al, IEEE Nonvolatile Memory Workshop, 2008, p. 101.
- [16] D. L. Kencke, et al, IEDM Tech. Dig., 2000, p. 105.
- [17] L. M. Weltzer, et al, Non-Volatile Memory Technol. Symp., 2004, p. 31.
- [18] Chi-Chao Wang, et al, IEEE Electron Device Lett., vol. 27(9), p. 749, 2006.
- [19] Li-Jung Liu, et al, Solid State Electron., vol. 54, p. 1113, 2010.
- [20] Scott C. Wolfson, et al, IEEE Trans. Electron Devices, vol. 57(10), p. 2499, 2010.
- [21] Takahiro Ohnakado, et al, IEEE Trans. Electron Devices, vol. 46(9), p. 1866, 1999.