Electrochemical Reactivity of Magnesium Ions With Sn-Based Binary Alloys

Atsushi KITADA^{ac*}, Yuu KANG^a, Yoshiharu UCHIMOTO^{bc}, and Kuniaki MURASE^{ac}

 ^a Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University, 36-1, Yoshida-honmachi, Sakyo, Kyoto 606-8501, Japan
^b Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo, Kyoto 606-8501, Japan

^c CREST, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan

Magnesium ion rechargeable battery systems receive considerable interest as candidate post-lithium systems. However, the exceedingly slow solid-state diffusion of the divalent Mg^{2+} cations has been a bottleneck in electrochemical insertion/extraction [1]. To date, there have been only a few kinds of anode materials such as Bi, Sb, Sn and Bi-Sb alloys [2,3]. Other potential anode materials such as alloy anodes, should be investigated as has been extensive in the case of lithium. In this paper we explored tin (Sn) alloys (Cu-Sn, In-Sn, Pb-Sn) as possible candidates for negative electrode materials.

All electrochemical experiments were performed in an Ar-filled glovebox (H₂O, O₂ < 1ppm). A three-electrode electrochemical cell was employed using Mg rods as the counter and reference electrodes. Sn, Pb_{0.4}Sn_{0.6}, In_{0.5}Sn_{0.5}, Cu₆Sn₅ and Cu₃Sn were used as the working electrodes after cleaning with acetone and/or ethanol. A 0.95 mol dm⁻³ solution of EtMgBr in THF (ca. 200ppm H₂O) was used as the electrolyte.

Figure 1a displays cyclic voltammograms (CV) for pure Sn, where combination of reduction and oxidation waves were clearly observed. The redox peaks were observed at +0.14 V and +0.25 V *vs.* Mg, respectively, comparable with the potential of charge-discharge plateaus, where Sn + $2Mg^{2+}$ + 4e = Mg_2Sn is suggested [3]. The maximal current density was as large as about 12 μ A cm⁻².

Insertion/desertion of Mg ions were also successful in In-Sn and Pb-Sn alloys. Fig. 1b shows the CV for In_{0.5}Sn_{0.5} alloy which consist of In₃Sn and In_{0.2}Sn_{0.8}, showed broad redox peaks, possibly indicating that both In₃Sn and In_{0.2}Sn_{0.8} phases are active against Mg. Shown in Fig. 1c is the case of eutectic Pb-Sn alloy, several reduction peaks were seen (0.04 V, 0.08 V, and 0.13 V vs. Mg), while one oxidation peak was seen (+0.29 V vs. Mg at 10th cycle). Since Pb-Sn system is a typical eutectic alloy where Pb-rich and Sn-rich phases coexist, the several cathodic peaks imply that both Sn-rich and Pbrich phases can react electrochemically to form such as Mg₂Sn and Mg₂Pb. The rather asymmetric CV curve may imply that, while Pb-rich and Sn-rich phase react with Mg individually, the Mg dissolution undergo in a cooperative way to reform Pb-Sn alloy: it is possible that the reformation of Pb-Sn alloy is a driving force for the demagnesiation process.

Figure 2 displays the CV for Sn, In-Sn and Pb-Sn at 10th cycle. The redox peaks of In-Sn and Pb-Sn alloys reached as large as about 130 μ A cm⁻², ten times larger than that of elemental Sn. Here, taking into account that the melting points of In-Sn and Pb-Sn alloys (about 120 °C and 180 °C, respectively) are much lower than that of elemental Sn (232 °C), alloys with lower melting points can be advantageous in terms of Mg diffusion rate.

[1] E. Levi, M. D. Levi, O. Chasid, and D. Aurbach, *J. Electroceram.* **22**, 13 (2009).

[2] T. S. Arthur, N. Singh, and M. Matsui, *Electrochem. Commun.* **16**, 103 (2012).

[3] N. Singh, T. S. Arthur, C. Ling, M. Matsui, and F. Mizuno, *Chem. Commun.*, **49**, 149 (2013).

Figure 1. CV data for (a) Sn, (b) Pb-Sn, and (c) In-Sn electrodes cycled between +0.05 V vs. Mg and the open circuit potential.

Figure 2. CV data of the 10th cycle for the Sn, In-Sn, and Pb-Sn electrodes.