Investigation of potential oscillations during the electro-oxidation of urea on Ni catalyst in alkaline medium

Vedasri Vedharathinam and Gerardine G. Botte

Center for Electrochemical Engineering Research
Department of Chemical and Biomolecular Engineering
Russ College of Engineering and Technology
Ohio University, Athens
OH 45701

Recently, electrolysis of urea-rich wastewater has gained much attention due to its ability to produce hydrogen as alternative fuel, while cleaning the wastewater. At the anode, urea is electrochemically oxidized to nitrogen (N\(_2\)) and carbon dioxide (CO\(_2\)), whereas water is reduced to hydrogen (H\(_2\)) at the cathode. Boggs et al. demonstrated that urea can be electrochemically oxidized on a transition-metal catalyst, nickel (Ni), in alkaline medium. The underlying reaction mechanism has not been completely understood or studied extensively. Recently we reported that electrocatalytic oxidation of urea on Ni catalyst follows a catalyst regeneration mechanism.

Electrochemical oscillations are well known to occur during the electrocatalytic oxidation of small organic molecules at the surfaces of Pt and Pt group metals. The electrochemical oscillations during the methanol oxidation at Pt electrodes have been related to the autocatalytic reaction where the adsorbed CO is electrochemically oxidized on a transition-metal catalyst, nickel (Ni), in alkaline medium. The underlying reaction mechanism has not been completely understood or studied extensively. Recently we reported that electrocatalytic oxidation of urea on Ni catalyst follows a catalyst regeneration mechanism.

Electrochemical oscillations are well known to occur during the electrocatalytic oxidation of small organic molecules at the surfaces of Pt and Pt group metals. The electrochemical oscillations during the methanol oxidation at Pt electrodes have been related to the autocatalytic reaction where the adsorbed CO is electrochemically oxidized on a transition-metal catalyst, nickel (Ni), in alkaline medium. The underlying reaction mechanism has not been completely understood or studied extensively. Recently we reported that electrocatalytic oxidation of urea on Ni catalyst follows a catalyst regeneration mechanism.

The potential oscillations experiments were conducted using Ni foil, Pt foil, and Hg/HgO as working, counter, and reference electrodes, respectively. Galvanodynamic experiment was carried out in 0.25 M urea + 5 M KOH solution at a scan rate of 0.001 mV/s. The data suggest that potential oscillations are possible during the electro-oxidation of urea on Ni catalyst. The galvanodynamic curve was overlapped on the cyclic voltammogram for Ni obtained with 0.25 M urea + 5 M KOH solution (10 mV/s) and the result is shown in Figure 2. The plot shows that the potential oscillations occur at the urea oxidation region observed in the cyclic voltammogram. This confirms that the potential oscillations are related to the electro-oxidation of urea molecules. But the exact phenomenon to instigate the oscillation of potential needs to be investigated.

The objective of the study is to understand the underlying mechanism during the potential oscillation of electro-oxidation of urea on Ni catalyst. Various electrochemical techniques such as cyclic voltammetry, galvonomatic, and galvanostatic experiments will be employed. Electrochemical coupled Fourier Transform Infrared Spectroscopy (FTIR) will also be used to understand the potential oscillations.

References:

Fig. 1 Galvanodynamic curve for the electrochemical oxidation of urea on Ni using 0.25 M urea + 5 M KOH solution. Scan rate: 0.001 mV/s.

The potential oscillations experiments were conducted using Ni foil, Pt foil, and Hg/HgO as working, counter, and reference electrodes, respectively. Galvanodynamic experiment was carried out in 0.25 M urea + 5 M KOH solution at a scan rate of 0.001 mV/s (Fig. 1). The data suggest that potential oscillations are possible during the electro-oxidation of urea on Ni catalyst. The galvanodynamic curve was overlapped on the cyclic voltammogram for Ni obtained with 0.25 M urea + 5 M KOH solution (10 mV/s) and the result is shown in Figure 2. The plot shows that the potential oscillations occur at the urea oxidation region observed in the cyclic voltammogram. This confirms that the potential oscillations are related to the electro-oxidation of urea molecules. But the exact phenomenon to instigate the oscillation of potential needs to be investigated.