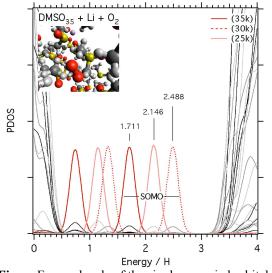
Lithium-air batteries: a DFT-MD study of $Li^+ + O_2^{*-}$ and LiO_2^* in DMSO and PC electrolytes

Johan Scheers^{1,2}, Keitaro Sodeyama^{2,3}, Zdeněk Futera², Yoshitaka Tateyama^{2,3}

 ¹Department of Applied Physics, Chalmers University of Technology, SE-41296, Gothenburg, Sweden.
²International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.


³Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Goryo-Ohara, Kyoto 615-8245, Japan.

The lithium-air battery combines the benefits of a nonlocally stored fuel (O_2 from air) with the very electropositive lithium metal. In theory, the combination enables a battery with a storage capacity comparable to that of gasoline. However, there are vast challenges involved to fulfil a practical lithium-air battery.

Research activities are focused on identifying materials; solvents, salts, binders, etc that will provide reversible electrochemistry, initially with pure oxygen as a fuel (Li-O₂ battery). A main obstacle is the poor electrolyte stability in the presence of the reduction products of O₂. Therefore, much effort has been devoted to study the reactivity and decomposition mechanisms of a first generation of solvents for Li-O₂ batteries, in particular propylene carbonate (PC).

Computationally, DFT calculations have been used to identify possible decomposition mechanisms for a variety of electrolyte solvents and to quantify the energy barriers to decomposition – in order to suggest alternatives [1–3]. In addition, *ab initio* Molecular Dynamics (DFT-MD) has been implemented for more detailed studies of single solvent decomposition, in bulk or in the presence of a Li_2O_2 surface [4,5].

Here we will present results from DFT-MD simulations of the radicals O_2^{*-} and LiO_2^{*} in PC and dimethyl sulfoxide (DMSO) with the aim of identifying electrolyte properties that could be used to *a priori* address the compatibility of electrolyte solvents and oxygen reduction products in Li–O₂ batteries.

Figure Energy levels of the single occupied orbitals (SOMO) in three states of $DMSO_{35} + L_1^{+} + O_2^{*-}$.

- 1. V.S. Bryantsev et al. J Phys Chem A 115 (2011) 12399.
- 2. V.S. Bryantsev et al. J Phys Chem A 116 (2012) 7128.
- 3. V.S. Bryantsev, Chem Phys Lett 558 (2013) 42.
- 4. T. Laino et al. Chemistry A Eur J 18 (2012) 3510.
- 5. R.S. Assary et al. J Phys Chem C 117 (2013) 8041.