Synthesis, Characterization, and Application of Tunable Resistance Coatings Prepared by Atomic Layer Deposition

Jeffrey W. Elam^a, Anil U. Mane^a, Oswald H. W. Siegmund^b, Jason McPhate^c, Matthew J. Wetstein^c, Andrey Elagin^d, Michael J. Minot^d, Aileen O'Mahony^d, Robert G. Wagner^a, Henry J. Frisch^c, William M. Tong^e, Alan D. Brodie^e, and Mark A. McCord^e

^aArgonne National Laboratory, Argonne, Illinois 60439 ^bSpace Sciences Laboratory, University of California, Berkeley, California 94720 ^cEnrico Fermi Institute, University of Chicago, Chicago, Illinois 60637 ^dIncom, Inc., Charlton, MA 01507 ^eKLA-Tencor, Milpitas, CA 95035

ABSTRACT

We have developed a nanocomposite coating comprised of conducting, metallic nanoparticles embedded in an amorphous dielectric matrix. These films are comprised of M:Al₂O₃ where M= W or Mo, and are prepared by atomic layer deposition (ALD) using alternating exposures to trimethyl aluminum (TMA) and H₂O for the Al₂O₃ ALD and alternating MF₆/Si₂H₆ exposures for the metal ALD. By varying the ratio of ALD cycles for the metal and the Al₂O₃ components in the film, we can tune precisely the resistance of these coatings over a very broad range from 10¹²-10⁵ Ohm-cm. These films exhibit Ohmic behavior and resist breakdown even at high electric fields of 10⁷ V/m. Moreover, the self-limiting nature of ALD allows us to grow these films inside of porous substrates and on complex, 3D surfaces. As a result of these qualities, these nanocomposite films have proved to be exceptional as charge drain coatings in electro-optical MEMS devices, and as resistive coatings in solid-state electron multipliers (microchannel plates, MCPs).

In this study, we employed *in situ* quartz crystal microbalance (QCM) and Fourier transform infrared (FTIR) absorption spectroscopy to understand the ALD growth mechanism for the nanocomposite films. In the case of the Mo:Al₂O₃ films, QCM showed that the Mo ALD inhibits the Al₂O₃ ALD and vice versa. Despite this inhibition, the relationship between Mo content and Mo cycle percentage was close to expectations. Surprisingly, FTIR revealed that the reducing agent for the Mo is not the Si₂H₆, but rather the TMA exposure from the subsequent Al₂O₃ ALD cycle. Depth profiling x-ray photoelectron spectroscopy showed that the M:Al₂O₃ films are uniform in composition and contained AI, O, and metallic Mo or W as expected, but also include significant F and C. Cross sectional transmission electron microscopy revealed the film structure to be metallic nanoparticles (~1 nm) embedded in an amorphous matrix.

We have utilized these nanocomposite coatings to functionalize capillary glass array plates to fabricate large-area MCPs suitable for application in large-area photodetectors. In addition, we have applied these films to serve as charge drain coatings in MEMS devices for a prototype electron beam lithography tool, and obtained high resolution electron beam patterns without charging artifacts.