Heterogeneous and Homogeneous Electron Transfer Kinetics of the [CeCl₆]^{3-/2-} Redox Reaction in the 1-Butyl-3-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquid

Li-Hsien Chou, Yunfeng Pan and Charles L. Hussey*

Department of Chemistry and Biochemistry, University of Mississippi, MS 38677, USA

The coordination of f-block elements complexed with chloride has been studied for many years, but the reports are restricted mainly to the octahedrally coordinated trivalent species, $[LnCl_6]^{3^-}$. However, cerium, which is one of the most abundant of the early f-block elements, is an exception because it is the only lanthanide element that has a stable tetravalent oxidation state in solution. As a result, Ce⁴⁺ is often used as a surrogate of convenience for actinide species such as Pu⁴⁺ and Th⁴⁺.

In a previous investigation, we reported the coordination of Ce⁴⁺ and Ce³⁺ in the 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid.¹ As a continuation of this study, we have examined the heterogeneous electron transfer kinetics of the [CeCl₆]^{2-/3-} redox reaction, as well as the homogeneous kinetics of the reaction of [CeCl₆]²⁻ with Cl⁻ in this ionic liquid. This investigation was conducted by using electrochemical impedance spectroscopy (EIS) and electronic absorption spectroscopy (UV-Vis). As shown in Fig. 1, EIS measurements indicate that the [CeCl₆]^{2-/3-} redox reaction is quasireversible in this ionic liquid. The standard heterogeneous rate constant, k^0 , of this reaction was found to be 1.2 x 10⁻⁴ cm s⁻¹ at 303 K with an activation energy of 28.1 kJ mol⁻¹. In addition, the mass transport of [CeCl₆]³⁻ and [CeCl₆]²⁻ was investigated with rotating-disk electrode voltammetry (RDEV). At 323 K, the average diffusion coefficients for [CeCl₆]³⁻ and [CeCl₆]²⁻ were found to be 8.0 x 10⁻⁸ and 6.8 x 10⁻⁸ cm² s⁻¹, respectively.

Figure 2 illustrates absorption spectra that were recorded over a period of 90 min for electrogenerated Ce⁴⁺ in the ionic liquid containing a 10-fold excess of Cl⁻ at 125°C. At short times, these spectra show bands at 257 and 376 nm consistent with those $[CeCl_6]^{2^-}$. However, an absorption band at 331 nm characteristic of $[CeCl_6]^{3^-}$ becomes apparent at longer times. The pseudo first-order homogeneous rate constant for this reaction, k', was found to be $1.57 \times 10^{-2} \text{ s}^{-1}$ at this temperature. An investigation of k' over the temperature range 333 – 398 K gave an activation energy of 88.0 kJ mol⁻¹ for this reaction.

ACKNOWLEDGEMENT

This work was funded by the Division of Chemical Sciences, Geoscience, and Biosciences, Office of Basic Energy Sciences of the U. S. Department of Energy through Grant DE-AC02-98CH10886.

Figure 1. Complex plane impedance plots recorded at a GC electrode in BuMePyroTf₂N containing 20 mM $[CeCl_6]^{3-} + 20 \text{ mM} [CeCl_6]^{2-}$ at (•) 303 K, (**▲**) 313 K, (**■**) 323 K, (**▼**) 333 K, and (•) 343 K. The solid lines represent the fitted Randles-Ershler equivalent circuit model. Inset: variation of k^{0° with the inverse of the absolute temperature.

Figure 2. Absorption spectra as a function of time for a 1.08 mM solution of $[CeCl_6]^{2-}$ in BMPyroTf₂N containing 11.9 mM Cl⁻ ion at 398K. The cell path length was 1.0 mm. Inset: plot of the $[CeCl_6]^{2-}$ concentration versus time.

Reference

 Chou, L.-H.; Cleland W. E., Jr.; and Hussey, C. L., *Inorg. Chem.*, **51**, 11450-11457 (2012).