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Magnesium anode batteries

A magnesium anode battery would be composed of a Mg

metal anode, electrolyte with Mgions and M§" intercalation
material. Scientists and engineers are in purdugdyanced
battery systems capable of providing higher eneatgysities
than Li-ion technologies while being comprised afes and
cheaper materials. Mg batteries have
potential to meet such demands.
To realize a working Mg battery
more compatible electrolyte media
are necessary. Investigating such
potential electrolytes is the primary
focus of this work.

Figure 1. Basic Schematic of idealized Mg secondary battery
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Battery electrochemistry in lonic Liquids

Previously, ionic liquids have been pursued for insbattery

systems due to their advantageous properties si&h a

nonvolatility, high intrinsic conductivity, and w&d
electrochemical windows. Butyl-methylpyrrolidinium
bis(trifluorosulfonyl)imide (BMPTFSI) was used ihi$ study.
The TFSI anion has been the focus of several studies for Li
and Li-ion systems as well as a few Mg
'N“  — electrochemical studies giving this report a
' 4 good means of comparisof.The primary
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Figure 2: Butyl-methylpyrrolidinium structure

Cyclic Voltammetry (CV) of Mg* salts: Optimizing the
solvation environment.

Reversible electrochemistry of organometallic Mgnpounds
like Grignard reagents (RMgX, X=Cl,Br,l) in ethelsalvents
like THF has been demonstrated on several occasion
before??® Unfortunately, these solutions have too narrow an
electrochemical window. Why they behave so revéysib
still not fully understood. Figure 3a compares CYé
EtMgBr/(THF+IL) to Mg(TFSI}/IL. Removal of THF from
EtMgBr drastically inhibited reversible depositioand
dissolution of Mg. This prompted a more thorough
investigation into the solvation environment. ClgafHF
provides a more favorable complexation environméont
RMgX salts and perhaps aids access to the interfgce
thinning the crowded cationic build up at negatpaentials
modeled by Kornyshev et &llt is thus suggested that the

interest here is making correlations between b

coordination sphere around the metal center campeoved
using appropriate ligand exchange. Oligoether glagents
have previously been used by Watanabe et al. tooweplLi
complexation in TFSIILs.®> Glymes were here applied in a
similar manner. Figure 3b demonstrates the imprergmia
substantially increased current responses and émver
overpotential for both Mg deposition and dissolntio
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—— 250mM EtMgBr/BMPTFSI (EtMgBr: THF 1:12)
—— 300mM Mg(TFSI),/BMPTFSI

Removal of THF from EtMgBr solution

—T—
1.0

T
15

T T — T T T T
20 -15 -10 -05 0.0 0.5 2.0

E(V) vs. Pt QRE (200mV/s)

J (mAIcmz)

—— 342mM Mg[G3](TFSI)2/BMPTFSI
—— 350mM Mg(TFSI)2/BMPTFSI

-35-3.0-25-20-15-10-05 00 05 10
E(V) vs. Pt QRE (200mV/s)

Figure 3: CVs of a) EtMgBr in THF & BMPTFSI
(EtMgBr:THF 1:12) —black, Mg(TFS}BMPTFSI-red
EtMgBr/BMPTFSI-blueb) Mg[G3](TFSI/BMPTFSI
compared against Mg(TFSIBMPTFSI (G3=Triglyme)
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