

Carbon-coated Magnéli phases Ti_4O_7 as anodes in
Lithium-Ion Batteries

Huajun Tian, Hangjun Ying and Wei-qiang Han*

* corresponding author (hanweiqiang@nimte.ac.cn)

Ningbo Institute of Materials Technology and
Engineering, Chinese Academy of Sciences Ningbo,
Zhejiang 315201, P. R. China

Titanium dioxide (TiO_2) has attracted great attention as a promising Li insertion electrode material in Lithium-Ion Batteries (LIBs) in view of its properties such as low cost, environmental friendliness, and higher Li-insertion potential (1.5–1.8 V vs. Li^+/Li) than the commercialized carbon anode materials.^{1,2} However, the low electronic conductivity of TiO_2 limits its applications in LIBs. Compared with the titanium dioxide, Magnéli phases $\text{Ti}_n\text{O}_{2n-1}$ (where n is a number between 4 and 10) exhibits a higher electronic-conductivity.³ Nevertheless, Magnéli phases $\text{Ti}_n\text{O}_{2n-1}$ has no access for Li^+ to insert due to its special crystal structure, and it is a surface reaction for them to form rich lithium compound. So, the Magnéli phases $\text{Ti}_n\text{O}_{2n-1}$ should possess large specific surface area for getting a high specific capacity. In the study, we describe our route to synthesizing carbon coated Ti_4O_7 , which is used as the anodes in Lithium-Ion Batteries. The initial reversible capacity of the Ti_4O_7 based LIBs attained 175.6 mAhg^{-1} , and could stabilize at 145 mAhg^{-1} after 25 cycles. The electrochemical performances of carbon coated Ti_4O_7 as the anodes in Lithium-Ion Batteries were studied in detail. It indicated that the excellent performance of Magnéli phases $\text{Ti}_n\text{O}_{2n-1}$ as anodes in Lithium-Ion Batteries could be realized by optimizing the preparation method and the active materials in the study. These results provide further investigation on the $\text{Ti}_n\text{O}_{2n-1}$ -based electrode materials for Lithium-Ion Batteries.

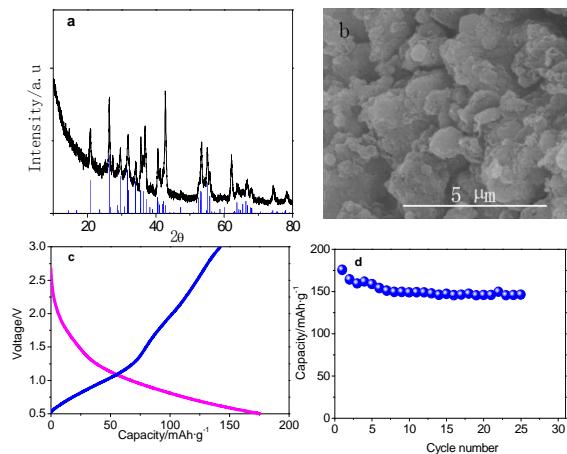


Figure 1. (a) XRD spectrum of the carbon-coated Ti_4O_7 ; (b) SEM image of the carbon-coated Ti_4O_7 ; (c) The first discharge and charge profile of the carbon-coated Ti_4O_7 samples; (d) Cycle performances of the carbon-coated Ti_4O_7

Acknowledgements

This work is supported by the Project of the Ningbo 3315 International Team of Advanced Energy Storage Materials.

References:

1. Li, J. M.; Wan, W.; Zhou, H. H.; Li, J. J.; Xu, D. S., Hydrothermal synthesis of TiO_2 (B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries. *Chem Commun* 2011, 47, 3439-3441.
2. Wang, D. H.; Choi, D. W.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, J. G.; Aksay, I. A.; Liu, J., Self-Assembled TiO_2 -Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion. *Ac Nano* 2009, 3, 907-914.
3. Han, W. Q.; Wang, X. L., Carbon-coated Magneli-phase $\text{Ti}_n\text{O}_{2n-1}$ nanobelts as anodes for Li-ion batteries and hybrid electrochemical cells. *Appl Phys Lett* 2010, 97.