## Inhibition of copper corrosion by removal of $H_2O_2$ from $CO_2$ -dissolved water using palladium catalysts

Daisaku Yano,<sup>a</sup> Masami Murayama,<sup>a</sup> Masao Takahashi,<sup>b</sup> Hikaru Kobayashi,<sup>b</sup> and Koji Yamanaka<sup>a</sup>

<sup>a</sup>Organo Corp., Sagamihara, Kanagawa 252-0332, Japan <sup>b</sup>ISIR, Osaka University, Ibaraki, Osaka 567-0047, Japan

In a Si wafer washing process with CO<sub>2</sub>-dissolved water (CO<sub>2</sub> DIW) corrosive dissolution of copper wires becomes a serious problem. CO<sub>2</sub> DIW is one kind of rinse water whose specific electrical resistance is lowered to  $0.05 \sim 0.2 \text{ M}\Omega \cdot \text{cm}$  by adding carbon dioxide to DIW, and it is widely used for preventing electrostatic destruction of devices and adhesion of fine particles on a wafer surface. Tokuri et al. have shown that copper corrosion is dependent on the concentration of dissolved oxygen in CO<sub>2</sub> DIW, and a slightly acidic condition of CO<sub>2</sub> DIW (pH 4.0 ~ 5.5) increases the corrosion rate.<sup>1</sup>

This study has been conducted in order to validate the effects on copper corrosion by  $H_2O_2$ -containing CO<sub>2</sub> DIW. Ultraviolet rays with wavelength less than 200 nm are usually irradiated in DIW used in a semiconductor manufacturing process for reducing total organic carbon (TOC). Hydroxyl radicals remove organic contaminants, but some hydroxyl radicals recombine, resulting in  $H_2O_2$ .<sup>2</sup> In our survey, it is revealed that the concentration of  $H_2O_2$  in DIW reaches to  $10 \sim 40 \ \mu g/L$  and the CO<sub>2</sub> DIW also contains  $H_2O_2$  at the same level. However, no studies have been made on the effects of  $H_2O_2$  in CO<sub>2</sub> DIW on copper corrosion.

As a test piece, a Cu film (200 nm) was deposited on a Ti/Si wafer by the sputtering method. Rinse of the Cu film was performed by use of a wafer spin cleaner. Changes of sheet resistance ( $\Delta R_s$ ) caused by the thickness decrease of the Cu film were measured using the 4-point probe method. For removal of H<sub>2</sub>O<sub>2</sub>, we used a palladium catalyst loaded on to a monolithic anion exchanger.<sup>3</sup> This catalyst can remove H<sub>2</sub>O<sub>2</sub> from DIW at the high flow rates (space velocity SV = 5000 h<sup>-1</sup> or more) with the high efficiency (< 1 µg/L).



Fig. 1. Sheet resistance difference of the Cu films treated with: Left)  $CO_2$  DIW containing  $15\mu g/L$   $H_2O_2$ , and Right)  $H_2O_2$ -free  $CO_2$  DIW.

It is obvious from Fig. 1 that copper corrosion was inhibited to approximately one-third by eliminating  $H_2O_2$  from CO<sub>2</sub> DIW. Furthermore, over a wide concentration range of dissolved oxygen (DO) up to 800 µg/L,  $H_2O_2$ -free CO<sub>2</sub> DIW was able to reduce corrosion of the copper film compared to CO<sub>2</sub> DIW prepared from normal DIW containing  $H_2O_2$  (Fig. 2). Figure 3 shows the scanning probe microscope (SPM; SII SPA-400) images of Cu films treated with 130 µg/L of DO for 16 hours in order to clarify morphological changes. Although holes were

generated due to corrosion in the surface of both the films, holes created by  $H_2O_2$ -free  $CO_2$  DIW were obviously much shallower.



Fig. 2. Relationship between the sheet resistance change and the concentration of dissolved oxygen in  $CO_2$  DIW.



Fig. 3. SPM images of the Cu film surfaces treated with: Left)  $CO_2$  DIW containing 15µg/L H<sub>2</sub>O<sub>2</sub>, and Right) H<sub>2</sub>O<sub>2</sub>-free CO<sub>2</sub> DIW.

For obtaining information concerning the reaction mechanism, X-ray photoelectron spectra (XPS) for the copper films treated with various types of rinse water were measured by use of a VG Scientific ESCALAB 220i spectrometer with a monochromatic AlK $\alpha$  1486.6eV radiation source. We found that the XPS spectra didn't depend on the presence of H<sub>2</sub>O<sub>2</sub> and also CO<sub>2</sub> in DIW (Fig. 4). This result indicates that although H<sub>2</sub>O<sub>2</sub> increases the copper corrosion rate, resulted copper surface chemical states don't depend on the presence of H<sub>2</sub>O<sub>2</sub> and CO<sub>2</sub> in DIW.



Fig. 4. XPS spectra in the Cu  $2p_{3/2}$  and O1s regions for the surfaces of the copper films treated with various types of rinse water: (a) CO<sub>2</sub> DIW containing  $15\mu g/L H_2O_2$ , (b)  $H_2O_2$  free CO<sub>2</sub> DIW, (c)  $H_2O_2$  free DIW.

- K. Tokuri, Y. Yamashita, M. Shiohara, N. Oda, S. Kondo, and S. Saito, Jpn. J. Appl. Phys., 49, 05FF04 (2010).
- 2. D. M. Pfenning, Ultrapure Water, 17(3), 49 (2000).
- H. Inoue, K. Yamanaka, A. Yoshida, T. Aoki, M. Teraguchi, and T. Kaneko, Polymer, 45, 3 (2004).