Deterioration Behavior of Pt in a Pt/Au Nanoparticle-Loaded Carbon Black Catalyst Analyzed by an Accelerated Durability Test

Kohei Okada, Masanobu Chiku, Eiji Higuchi, and Hiroshi Inoue Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University Sakai, Osaka 599-8531, Japan

Introduction

For the reduction of Pt consumption, it is important to improve the mass activity (MA) for oxygen reduction reaction (ORR) in electrocatalyst for polymer electrolyte fuel cells. Pt-based core shell catalyst can reduce the amount of Pt used to a limit, and have high electrocatalytic activity for ORR. Recently, we have succeeded in the preparation of Au nanoparticles loadedcarbon black catalysts (Au-PVA/CB and Au-G/CB) with mean size of *ca.* 3.3 nm and *ca.* 2.5 nm by using CO as a reducing agent in KAuCl₄ aqueous solution containing polyvinyl alcohol $(PVA)^1$ and glutathione (GSH) as a stabilizer respectively. Those catalysts heat-treated in order to remove a stabilizer (Au-PVA/CB-HT and Au-G/CB-HT), and particle size increased slightly and was set to 3.5 ± 0.7 nm and 2.8 ± 0.5 nm, respectively. On the other hand, MA at 0.9 V vs. RHE of Pt/Au-G/CB-HT catalyst is higher than that of Pt/Au-PVA/CB-HT catalyst. Shao et al. have reported that if the particle size of Au core is prepared small, MA will improves. 2 Because the compressive strain of Pt monolayer become large and biding energy of Pt-O become weaker. Moreover, if small Au nanoparticle is prepared, the degradation of durability by solid solution formation of Pt and Au can be suppressed. Durability of Au-G/CB-HT has also better than that of commercial Pt/CB (Pt/CB-TKK, TEC10E50E). In this study, we evaluated the degradation factor under durability test by measuring Pt surface area, the amount of Pt dissolution, and particle size in any number of cycles of a Pt/Au-G/CB-HT catalyst.

Experimental

 The Au nanoparticles was prepared by bubbling CO in KAuCl₄ aqueous solution containing GSH at 4 $^{\circ}$ C for 90 s and then Ketjen Black was added into it, followed by sonicating for 60 min. The Au-G/CB was heat-treated at 300 °C under vacuum. The content of Au in the Au-G/CB-HT was *ca.* 19 wt. %. Pt monolayer was deposited by using galvanic displacement of Cu-upd monolayer on Au nanoparticles.^{1, 3, 4} For Pt/Au/CB, the Au size of Pt/Au nanoparticles were evaluated by transmission electron microscope. To evaluate electrochemical properties of the Au-G/CB and Pt/Au-G/CB-HT catalysts, a Nafion-coated GC disk electrode was prepared according to the previous procedure.¹ The ORR activity for the Pt/Au/CB was evaluated in an O_2 -saturated 0.1 M HClO₄ aqueous solution at 25 ºC by rotating disk electrode method. Durability against Pt dissolution of the Pt/Au/C was tested using square-wave potential cycling between 0.6 V for 3 s and 1.0 V for 3 s at 60 $^{\circ}$ C.^{1, 3}

Results and Discussion

From hydrodynamic voltammograms, the current for ORR commenced to increase at ca. 1.0 V and reached the diffusion limiting current at ca. 0.6 V. From the slope of Koutecky-Levich plots, the number of electrons in ORR was evaluated to be 4, suggesting that the reduction of oxygen to water proceeded preferentially. Fig. 1 shows

the normalized surface area of Pt with potential cycling to evaluate durability against the dissolution of Pt for the Pt/Au-G/CB-HT, Pt/Au-PVA/CB-HT and Pt/CB-TKK electrodes. The normalized surface area was defined as the percentage of electrochemical surface area (ECSA) of Pt at *n*th cycle to initial cycle. The durability for the Pt/Au-G/CB-HT electrode was superior to the Pt/Au-PVA/CB-HT electrode. Fig. 2 shows the particle size for the Pt/Au-G/CB-HT electrode. The particle size did not increase between 0 and 500 cycles; however, the solid solution may have already formed, because specific surface area of Pt decreased. The particle size increased by *ca*. 0.5 nm after 2000 cycle. From 2000 to 10000 cycles, the particle size did not increase. Thus, the decrease in durability was consistent with the formation of the solid solution between 0 and 1000 cycles and the dissolution and re-precipitation of Pt from 1000 to 2000 cycles.

Acknowledgement

This work was supported by New Energy and Industrial Technology Development Organization (NEDO) through the industrial technology research grant program (08002049-0).

References

- 1. E. Higuchi, K. Hayashi, M. Chiku, H. Inoue, *Electrocatal.,* **3**, 274 (2012).
- 2. M. Shao, A. Peles, K. Shoemker, M. Gummalla, P. N. Njoki, J. Luo, C. J. Zhong, *J. Phys. Chem. Lett*., **2**, 67 (2011).
- 3. M. Inaba, H. Ito, H. Tuji, T. Wada, M. Banno, H. Yamada, M. Saito, A. Tasaka, *ECS Trans*, **33**, 231 (2010).
- 4. J. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, and Radoslav R. Adzic, *Angew. Chem. Int. Ed*., **44**, 2132 (2005).

Fig. 2 Change in particle size of Pt/Au-G/CB-HT with cycle number at 60 °C.