Simultaneous Visualization of Oxygen Partial Pressure and Current Density in Running PEFC

K. Takanohashi,a J. Inukai,a M. Uchida,a Y. Nagumo,b T. Suga,b H. Nishide,c and M. Watanabea

aUniversity of Yamanashi, 4 Takeda, Kofu, Yamanashi 400-8510, Japan
bShimazu Co Ltd., 3-9-4 Hikaridai, Seika-cho, Kyoto 619-0237, Japan
cWaseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
E-mail: jinukai@yamanashi.ac.jp

The reactions inside a fuel cell during the power generation are inhomogeneous, which may lead to decreasing the cell performance and enhancing the MEA degradation. It is therefore important to elucidate the distributions of physical and chemical parameters inside fuel cells, such as temperature, oxygen partial pressure (p(O2)), water concentration, CO2 concentration, etc. We have so far visualized the distributions of p(O2)3–5 and water droplets1–4 during the power generation and CO2 concentration3 during the degradation. A new visualization system has now been developed, which enables us to understand the distribution of p(O2) and current density simultaneously in a running PEFC.

To visualize inside the cell, we fabricated a special see-through cell with a cathode plate made of a transparent acrylic resin. This cell also has nine segmented current collectors both at the cathode and the anode (Fig.1). The potentials of the current collectors are controlled to be the same by the external circuit so that the nine collectors both at the cathode and the anode (Fig.1). The current density simultaneously in a running PEFC.

Fig.2 Visualization system

Fig.3 shows the distributions of p(O2) at the cathode and the current density at 53% RH at 80 °C (a) and 40 °C (b). Oxygen utilization (Uo2) was set at 20%. p(O2) decreased from the entrance to the exit. The current density at 80 °C was uniformly distributed, whereas at 40 °C, the current density was higher near the exit than that near the entrance, which could be explained by the higher proton conductivity of the membrane near the exit caused by the generated water.

This technique is expected for the improvement of MEAs, cell designing, and the operating conditions.

Fig.3 Distributions of p(O2) and the current density at 80 °C (a) and 40 °C (b). Relative humidity = 53% RH; gas flow rate = 300 ml min−1; oxygen utilization = 20%.

Acknowledgements
This study was supported by HiPer-FC, NEDO, Japan.

References
5) Y. Ishigami et al., J. Power Sources, 196, 3003 (2011).

\[p(O_2) \approx \text{constant} \]

\[\text{Spatial resolution}: 0.15 \text{ mm} \]

\[\text{Time resolution}: 100 \text{ ms} \]