

Effect of “Nano Inclusion” on cycle performance of LiMn_2O_4 cathode material at 3V range

Yuya Kawai¹, Junpei Harada¹, Shogo Esaki^{1,2}, Motoaki Nishijima², and Takeshi Yao¹

1 Graduate School of Energy Science, Kyoto University
Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

2 Materials and Energy Technology Laboratories,
Corporate Research and Development Division,
SHARP CORPORATION
2613-1, Ichinomoto-cho, Tenri, Nara 632-8567, Japan

Introduction

LiMn_2O_4 which has the cubic spinel structure has been attracting attention as a cathode material because of low toxicity, availability, low cost, and safety. For practical application, it is necessary to solve the capacity fading problem during charge-discharge cycles. LiMn_2O_4 works at 4V and 3V ranges. Previously, we reported that, by firing Li_2CO_3 and MnCO_3 with Zn_2SnO_4 , we formed very thin plate-shaped ZnMn_2O_4 inside LiMn_2O_4 single crystal having common oxygen arrangement with LiMn_2O_4 connected without crystal boundaries, that we named the material “Nano Inclusion” and that the cycle performance of LiMn_2O_4 with “Nano Inclusion” was superior to that of LiMn_2O_4 at 4V range^{[1],[2],[3]}. We also investigated the effect of the amount of “Nano Inclusion” to the cycle performance at 3V range^[4]. In this study, we prepared LiMn_2O_4 as previous study and changed heat-treating time. We investigated the effect on the cycle performance.

Experiment

ZnO and SnO_2 were mixed at a molar ratio of $\text{Zn:Sn}=2:1$, fired at 1000°C for 12h, then Zn_2SnO_4 with spinel structure was synthesized. Li_2CO_3 , MnCO_3 and thus obtained Zn_2SnO_4 were mixed with a molar ratio of $\text{Li:Mn:Zn}_2\text{SnO}_4=0.925:1.85:0.075$. The mixture was calcinated at 550°C for 6h in air and then heat-treated at 800°C for z hours in air($z=2,4,8$). The obtained sample was denoted by the value of z hereafter. We also synthesized LiMn_2O_4 . Li_2CO_3 and MnCO_3 were mixed and calcinated at 550°C for 6h in air and then heat-treated at 800°C for 4h in air. X-ray diffraction measurements of the samples were carried out. The cycle performance was investigated with a two-electrode cell. The cathode was fabricated by mixing powder of the samples as the active material, acetylene black as a conducting additive and PVDF as a binder at the ratio of 80:15:5 by weight, and coating the mixture onto an Al foil by using N-methylpyrrolidone as a solvent. Lithium metal was used as counter electrode. The electrolyte was a 1 M solution of LiPF_6 in a mixture of EC and DMC (2:1, v/v). Cycle tests were carried out at between 2.0 V and 3.5 V under the constant temperature at 25°C . The current density was 120 mA g^{-1} .

Results and Discussion

Fig.1 shows discharge capacity as a function of cycle number for the samples. Discharge capacity of LiMn_2O_4 was larger than that of other samples at 1st cycle. But discharge capacity retention of LiMn_2O_4 was lower than that of other samples. At the 3V region, it is well known that the large volume change occurs accompanying with charge-discharge cycles and that this property causes not good cycle performance^[5]. “Nano Inclusion” does not enter into electrochemical reaction, so it is considered that

“Nano Inclusion” suppresses the crack propagation caused by the volume change of LiMn_2O_4 . HAADF-STEM images for the cross section of the samples are shown in Fig.2. Previously, we reported effect of size of “Nano Inclusion” by heating time^[3]. HAADF-STEM images revealed that the particle size of LiMn_2O_4 increased as z increased. It is considered that “Nano Inclusion” grew during the heat treatment at 800°C . In this time, the sample of $z=8$ was the best size of “Nano Inclusion” compared to other samples.

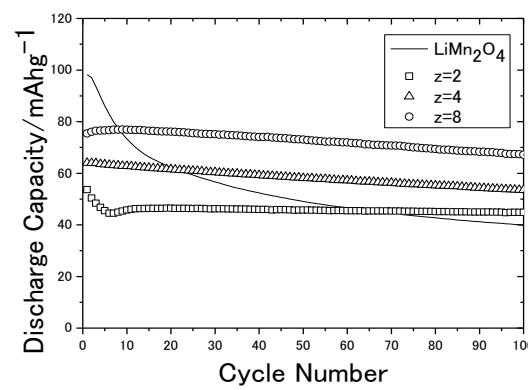


Fig. 1 Discharge capacity as a function of cycle number for LiMn_2O_4 and $0.925\text{LiMn}_2\text{O}_4\text{-}0.075\text{Zn}_2\text{SnO}_4$.

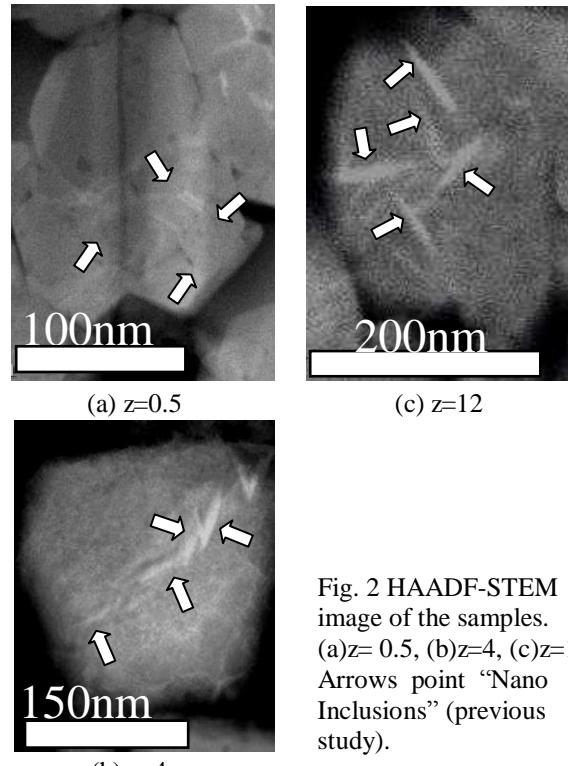


Fig. 2 HAADF-STEM image of the samples.
(a) $z=0.5$, (b) $z=4$, (c) $z=12$.
Arrows point “Nano Inclusions” (previous study).

References

- [1] S. Esaki, T. Yao, M. Nishijima, K. Hiroe, and H. Tsubouchi, 219th Meeting of the Electrochemical Society CD Abst. 0205(2011).
- [2] S. Esaki, T. Yao, M. Nishijima, K. Hiroe, and H. Tsubouchi, The 62nd Annual Meeting of the International Society of Electrochemistry (2011)
- [3] S. Esaki, T. Yao, M. Nishijima, K. Hiroe, and H. Tsubouchi, 220th Meeting of the Electrochemical Society CD Abst. 1306(2011).
- [4] Y. kawai and T. Yao, 223rd Meeting of the Electrochemical Society CD Abst. 82(2013)
- [5] T. Ohzuku, M.Kitagawa, T. Hirai, J.Electrochem. Soc. 137,769 (1990).