Effect of "Nano Inclusion" on cycle performance of LiMn₂O₄ cathode material at 3V range

Yuya Kawai¹, Junpei Harada¹, Shogo Esaki^{1,2}, Motoaki Nishijima², and Takeshi Yao¹

1 Graduate School of Energy Science, Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

2 Materials and Energy Technology Laboratories, Corporate Research and Development Division, SHARP CORPORATION

2613-1, Ichinomoto-cho, Tenri, Nara 632-8567, Japan

Introduction

LiMn₂O₄ which has the cubic spinel structure has been attracting attention as a cathode material because of low toxicity, availability, low cost, and safety. For practical application, it is necessary to solve the capacity fading problem during charge-discharge cycles. LiMn₂O₄ works at 4V and 3V ranges. Previously, we reported that, by firing Li₂CO₃ and MnCO₃ with Zn₂SnO₄, we formed very thin plate-shaped $ZnMn_2O_4$ inside $LiMn_2O_4$ single crystal having common oxygen arrangement with LiMn₂O₄ connected without crystal boundaries, that we named the material "Nano Inclusion" and that the cycle performance of $LiMn_2O_4$ with "Nano Inclusion" was superior to that of $LiMn_2O_4$ at 4V range^{[1],[2],[3]}. We also investigated the effect of the amount of "Nano Inclusion" to the cycle performance at 3V range^[4]. In this study, we prepared LiMn₂O₄ as previous study and changed heat-treating time. We investigated the effect on the cycle performance.

Experiment

ZnO and SnO₂ were mixed at a molar ratio of Zn:Sn=2:1, fired at 1000°C for 12h, then Zn₂SnO₄ with spinel structure was synthesized. Li_2CO_3 , $MnCO_3$ and thus obtained Zn₂SnO₄ were mixed with a molar ratio of Li:Mn:Zn₂SnO₄=0.925:1.85:0.075. The mixture was calcinated at 550°C for 6h in air and then heat-treated at 800°C for z hours in air(z=2,4,8). The obtained sample was denoted by the value of z hereafter. We also synthesized LiMn₂O₄. Li₂CO₃ and MnCO₃ were mixed and calcinated at 550°C for 6h in air and then heat-treated at 800°C for 4h in air. X-ray diffraction measurements of the samples were carried out. The cycle performance was investigated with a two-electrode cell. The cathode was fabricated by mixing powder of the samples as the active material, acetylene black as a conducting additive and PVDF as a binder at the ratio of 80:15:5 by weight, and coating the mixture onto an Al foil by using Nmethylpyrrolidone as a solvent. Lithium metal was used as counter electrode. The electrolyte was a 1 M solution of LiPF₆ in a mixture of EC and DMC (2:1, v/v). Cycle tests were carried out at between 2.0 V and 3.5 V under the constant temperature at 25°C. The current density was 120 mAg⁻¹.

Results and Discussion

Fig.1 shows discharge capacity as a function of cycle number for the samples. Discharge capacity of $LiMn_2O_4$ was larger than that of other samples at 1st cycle. But discharge capacity retention of $LiMn_2O_4$ was lower than that of other samples. At the 3V region, it is well known that the large volume change occurs accompanying with charge-discharge cycles and that this property causes not good cycle performance^[5]. "Nano Inclusion" does not enter into electrochemical reaction, so it is considered that

"Nano Inclusion" suppresses the crack propagation caused by the volume change of $LiMn_2O_4$. HAADF-STEM images for the cross section of the samples are shown in Fig.2. Previously, we reported effect of size of "Nano Inclusion" by heating time^[3]. HAADF-STEM images revealed that the particle size of $LiMn_2O_4$ increased as z increased. It is considered that "Nano Inclusion" grew during the heat treatment at $800^{\circ}C$. In this time, the sample of z=8 was the best size of "Nano Inclusion" compared to other samples.

Fig. 1 Discharge capacity as a function of cycle number for $LiMn_2O_4$ and $0.925LiMn_2O_4$ - $0.075Zn_2SnO_4$.

Fig. 2 HAADF-STEM image of the samples. (a)z= 0.5, (b)z=4, (c)z=12. Arrows point "Nano Inclusions" (previous study).

References

- [1] S. Esaki, T. Yao, M. Nishijima, K. Hiroe, and H. Tsubouchi, 219th Meeting of the Electrochemical Society CD Abst. 0205(2011).
- [2] S. Esaki, T. Yao, M. Nishijima, K. Hiroe, and H. Tsubouchi, The 62nd Annual Meeting of the International Society of Electrochemistry (2011)
- [3] S. Esaki, T. Yao, M. Nishijima, K. Hiroe, and H. Tsubouchi, 220th Meeting of the Electrochemical Society CD Abst. 1306(2011).
- [4] Y. kawai and T. Yao, 223rd Meeting of the Electrochemical Society CD Abst. 82(2013)
- [5] T. Ohzuku, M.Kitagawa, T. Hirai, J.Electorochem. Soc. 137,769 (1990).