Effect of Ni(NO₃)₂•6H₂O on Hydrothermal Synthesis of LiMnPO₄

<u>Yusuke Namiki¹</u>, Shuhei Yoshida², Daisuke Shibata², Hirokazu Munakata¹, Kiyoshi Kanamura¹ ¹Department of Applied Chemistry Graduate School of Urban Environmental Sciences Tokyo Metropolitan University, ² DENSO CORPORATION ¹1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

²1-1 Showa-cho, Kariya, Aichi 448-866, Japan

Introduction

Lithium metal phosphates (LiMPO₄, M = Fe, Mn, Co and Ni) have been investigated as promising cathode materials for lithium ion batteries. The distinctive features of this kind of cathode materials are good thermal and structural stability due to a strong covalent bond between oxygen and phosphorus atoms. Actually, a good cycle performance of LiFePO₄ has been demonstrated in many practical applications [1]. However, the operating potential of LiFePO₄ (3.4 V vs. Li /Li⁺) is lower than that of conventional LiCoO2. Therefore, there is a strong demand to develop LiMPO₄ cathodes with higher redox potentials than that of LiFePO₄ to achieve higher energy density of lithium ion batteries. So far, many efforts have been paid to develop LiMnPO₄ because of its high redox potential of 4.1 V vs. Li/Li⁺. The electrical conductivity of LiMnPO₄ is two orders of magnitude lower than that of LiFePO₄ [2]. This makes it difficult to prepare LiMnPO₄ with adequate electrochemical performance for practical use. In our previous study, we synthesized carbon-coated LiMnPO₄ via hydrothermal process with different carbon sources, and found that the electrochemical performance of LiMnPO₄ with several hundred nm or less particle size depended on the state of carbon coating [3]. In this study, we focused on $Ni(NO_3)_2 \bullet 6H_2O$ as a catalyst for appropriate carbon-coating on LiMnPO₄ and investigated its role in the hydrothermal synthesis of carbon-coated LiMnPO₄.

Experimental

Li₂SO₄, (NH₄)₂HPO₄, MnSO₄•5H₂O and sodium salt of carboxymethylcellulose were mixed in a molar ratio of 1.5 : 1 : 1: 0.03. The amount of Ni(NO₃)₂•6H₂O added to those starting materials was changed from 0 to 40 wt.%. The mixture was then dissolved in pure water to prepare LiMnPO₄ precursor solution, in which the concentration of Mn^{2+} was controlled to be 3.0 mol dm⁻³. comparison, a precursor solution without Ni(NO₃)₂•6H₂O was also examined. The precursor solution was transferred into an autoclave, and then hydrothermally treated at 200 °C for 3 h. The product was collected by filtration and freeze-drying. The obtained sample was then ball-milled for 10 h at 400 rpm using a planetary-type ball mill and heated at 700 °C for 1 h under 97 % Ar + 3% H₂ atmosphere. The crystal structure and morphology of samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The carbon on LiMnPO₄ samples was analyzed by Raman spectroscopy. The electrochemical performance of samples was investigated by using 2032 coin-type cell with lithium metal anode and composite cathode including LiMnPO₄, Ketjen Black and polyvinylidene fluoride (PVdF). The mixing ratio of LiMnPO₄, Ketjen Black and PVdF was 75:15:10 in weight. A mixed solvent between ethylene carbonate (EC) and diethyl carbonate (DEC) (1:2 in vol.) with 1 mol dm⁻¹

 $LiPF_6$ in was used an electrolyte solution. The charge discharge measurement was performed in a potential range of $2.0 \sim 4.5$ V at 30 °C.

Results and discussion

Figure 1 shows XRD patterns of the samples prepared without and with 2 wt% Ni(NO₃)₂•6H₂O. Both samples were crystallized in an orthorhombic olivine structure with a Pnma space group. However, the sample prepared without Ni(NO₃)₂•6H₂O showed two small peaks due to impurities. Figure 2 shows Raman spectra for the samples prepared without and with 2 wt% $Ni(NO_3)_2 \cdot 6H_2O$. The peaks attributable to G and D bands of carbon were clearly observed for both samples. However, the sample prepared without the Ni catalyst showed a small peak of PO_4^{3-} . This result suggests that the particle surface is roughly coated with carbon, In other words, LiMnPO₄ is not covered with carbon, perfectly. On the contrary, the PO₄³⁻ peak was hardly observed for the sample prepared with the Ni catalyst. This difference supports that Ni(NO₃)₂•6H₂O works as a carbon coating catalyst and provides LiMnPO₄ sample with a uniform carbon layer.

Fig .1 XRD patterns of the products obtained from precursor solutions (a) with and (b) without 2 wt% $Ni(NO_3)_2$ •6H₂O.

Fig .2 Raman spectra of the products obtained from precursor solutions (a) with and (b) without 2 wt% $Ni(NO_3)_2$ •6H₂O.

[1] A.K.Padhi et al., *J Electrochem. Soc*, Vol. 144, No. 4, April 1997

[2] M. Yonemura et al., *Journal of the Electrochemical Society*, 151 (9) A1352-A1356 (2004)

[3] Y Mizuno et al., Journal of the Ceramic Society of Japan, 177 [11] 1225-1228 (2009)