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Manganese dioxide based cathode materials have
considerable potential as high power, low cost safi
electrode materials in both primary Li/MaOand
secondary Li-ion battery technologies [1, 2]. Ptioruse

in primary Li/MnG, batteries, the MnOmust be heated to
remove structural water and to form a compound more
suitable to lithium intercalation [3]. There arenmerous
reports in the literature investigating lithiumentalation
into heat-treated Mn materials using experimental
techniques such as ex-situ lab-based XRD, convergen
beam electron diffraction, Li MAS NMR and
electrochemical methods [3-5]. However, there fdeli
agreement between these reports on the actualadgeh
mechanism. This work examines the structural eiaiut

of heat-treated Mn® with respect to discharge (and
applied current rate) in a real cell environmenbgsime-
resolved in-situ  synchrotron X-ray diffraction.
Additionally, the in-situ results are compared fighter-
resolution ex-situ data.

Selected in-situ diffraction patterns showing thectural
evolution of the heat-treated Mp@lischarged at a 4.3
mA/g rate are displayed in Figure 1. The ex-situ
diffraction patterns of the heat-treated Mrdischarged at
11.4 mA/g, and measured at various degrees of aligeh
are shown in Figure 2.

The structural changes observed in the in-situeaditu
data as the heat treated Mni® reduced are related with
the electrochemical behavior of the battery, and a
discharge mechanism is proposed. This is discussed
relation to previously proposed discharge mechasifem
the primary Li/MnQ system.
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Figure 1: Selected in-situ synchrotron X-ray diffraction
patterns collected during the 4.3 mA/g dischargehén
regions (i) 19.620<20.2 (2.5&d<2.36 A) and
(i) 29.0<20<30.0 (1.650<1.60 A). The 'relaxed’
structure for the 0.015 mA and 0.060 batteries omeas
after 6 and 4 days, respectively (top pattern)ré&lean
emergence of a new phase indicated by (*) and coefi
by ex-situ data.

284, 0013

L — T T
19.0 19.2 194 19.6 19.8 20.0
20

(@ w * ©) @

ity (a.uw.)

Figure 2: Ex-situ synchrotron X-ray diffraction patterns
of heat-treated Mngtaken at various degrees of
discharge. Shaded areas shdwe&ygions which will be
further examined in the presentation. Peaks arisomg

Al foil scraped from the current collector with the
removal of the cathode material are marked with (#)



