Electrochemical Reduction of CO₂ using Supported Cu₂O Nanoparticles

Joel Bugayong, Gregory L. Griffin*

Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 Center for Atomic-Level Catalyst Design, Energy Frontier Research Center, Louisiana State University, Baton Rouge, LA 70803 *Email: griffin@lsu.edu

The oxidation state of Cu is reported to have a significant effect on its product selectivity during CO₂ electroreduction. For metallic Cu, it is widely accepted that CO and HCOOH are the main products formed at low overpotentials, while hydrocarbons (notably CH₄ and C₂H₄) become the dominant products at higher potentials [1,2]. However, a few groups have reported CH₃OH as a major product using pre-oxidized Cu electrodes [3] or supported Cu₂O nanoparticles [4]. It has also been reported that supported Cu₂O layers, although being reduced to Cu metal under CO₂ reduction conditions, result in a decreased overpotential for CO formation, relative to Cu metal [5].

In this study we examine the stability and product selectivity of CO₂ electroreduction using colloidally prepared Cu₂O nanoparticles [4]. The starting solution of aqueous CuCl₂ with polyethylene glycol (PEG) surfactant is reduced using L-ascorbic acid sodium (LAAS), aged for 6 hours, then rinsed with deionized water. The resulting slurry is mixed with a Nafion/ethanol solution, sonicated for 10 minutes, and dried onto Toray carbon paper. The CO₂ reduction experiments are performed using a two compartment cell with a Nafion membrane separator, a Pt wire counterelectrode, and Ag/AgCl reference electrode. The working electrolyte is aqueous 0.5M KHCO₃ that is bubbled continuously with CO2. Product concentrations are determined using gas chromatography. Gas phase products $(H_2, CO, CH_4, and C_2H_4)$ are sampled directly from the CO₂ purge gas leaving the reactor. Liquid products (mainly CH₂H₅OH) are measured by taking syringe samples of the electrolyte at 15 minute intervals.

The SEM images of freshly prepared electrodes show the cubic morphology expected for Cu₂O particles, as reported by Chang *et al.* [4]. X-ray diffraction measurements confirm that only peaks assigned to the Cu₂O phase are present (i.e., no peaks assignable to metallic Cu are observed). After being used for CO₂ reduction (i.e., 120 minutes at -1.745 V(SCE), the XRD measurements indicate that nearly all of the Cu₂O is reduced to Cu metal. The SEM images show the reduced electrode material retains the same cubic morphology as the starting Cu₂O nanoparticles, but the surface of the cubes become decorated with much smaller clusters.

The CO₂ reduction experiments are performed at a single potential, -1.745 V(SCE). This potential is selected to be well into the region for CH_4 and C_2H_4 formation on Cu electrodes [1,6]. For our supported Cu₂O nanoparticle electrodes at this potential, the largest CO₂ reduction product is C_2H_4 , with a Faradaic efficiency of 34%. We also observe the formation of C2H5OH in parallel to C2H4, with a Faradaic efficiency of about 6%. In contrast, the formation rate of CH4 is much lower, with a Faradaic efficiency of only 1%. (The largest overall product in these experiments is H_2 , which we attribute to H_2O reduction on the incompletely covered carbon support. Control experiments using both unmodified and Nafion-treated carbon paper confirm very low activity for CO₂ reduction in the absence of Cu₂O nanoparticles on these supports.)

The most noticeable feature of the CO₂ reduction behavior using the supported Cu₂O nanaparticle electrodes appears to be the large C_2H_4/CH_4 product ratio. At our selected electrode potential of -1.75 V(SCE), Hori et al. [6] reported that CH₄ formation actually exceeded C₂H₄ formation by a factor of 2 on polycrystalline Cu. Using single crystal studies, the group later showed the C_2H_4/CH_4 ratio is sensitive to surface structure, with C_2H_4 formation being favored on higher index surfaces [7]. The highest ratio they reported (i.e., observed using the Cu(711) surface) was C_2H_4 : $CH_4 = 14:1$, which approaches the value reported here. More recently, Schouten et al. [8] were able to resolve separate pathways for C_2H_4 and CH_4 formation on Cu(111) and Cu(100) surfaces, with the latter (somewhat) more open surface providing an independent, lower energy pathway for C_2H_4 formation.

Our present results support a model in which the Cu₂O particles are converted to metallic Cu during CO₂ reduction. The morphological evolution of the starting Cu₂O nanoparticles during this reduction leads to the formation of more highly dispersed Cu clusters on the surface of the converted particles. The dispersed Cu clusters are expected to contain a higher concentration of more open crystal faces and lower co-ordination surface atoms, which leads to the observation of a higher C₂H₄/CH₄ ratio, relative to low-index planar Cu surfaces. Additional work is underway to further characterize these dispersed Cu clusters, and to explore methods to improve their stability during prolonged electrochemical operation.

References

- Y. Hori, "Electrochemical CO₂ Reduction on Metal Electrodes", in *Modern Aspects of Electrochemistry*, 42, edited by C. G. Vayenas, (Springer, 2008) p89-189.
- [2] M. Gattrell, N. Gupta, and A. Co, *Journal of Electroanalytical Chemistry*, **594**, 1 (2006).
- [3] K. W. Frese, Jr., *J. Electrochem. Soc.*, **138** (11), 3338 (1991).
- [4] T.-Y. Chang, R.-M. Liang, P.-W. Wu, J.-Y. Chen, and Y.-C. Hsieh, *Materials Letters*, 63, 1001 (2009).
- [5] C. W. Li and M. W. Kanan, J. Am. Chem. Soc., 134 (17), 7231 (2012).
- [6] Y. Hori, A. Murata, and R. Takahashi, J. Chem. Soc., Faraday Trans. 1, 85, 2309 (1989).
- [7] Y. Hori, I. Takahashi, O. Koga, and N. Hoshi, *J. Phys. Chem. B*, **106**, 15 (2002).
- [8] K. J. P. Schouten, Z. Qin, E. P. Gallent, and M. T. M. Koper, J. Am. Chem. Soc., 134 (24), 9864 (2012).

Acknowledgments

This material is based upon work supported as part of the Center for Atomic Level Catalyst Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001058.