Nano-sized vs. Micro-sized Powders Agglomerated LiFePO₄ for Lithium Ion Batteries

Manuel Pfanzelt, Rainald Forbert, Gerhard Nuspl, Norbert Schall

Clariant Produkte (D) GMBH Ostenriederstr. 15, 85368 Moosburg, Germany

Lithium iron phosphate (LiFePO₄) is an attractive cathode material for lithium ion batteries with a high safety, low costs, excellent electrochemical performance and good cycling stability [1]. The limiting factors of this cathode material are the low electronic and ionic conductivity of the lithiated (LiFePO₄) and delithiated (FePO₄) form. The electronic conductivity can be increased by additives e.g. different types of carbon which can be coated on the surface of the material during / after synthesis or added to the electrode composition [2]. In order to overcome the obstacle of low ionic it is crucial to reduce the particle size of LiFePO₄ to nanometer scale.

Nano-sized LiFePO₄ with carbon coating can reach capacities close to the theoretical value of 170 mAh g⁻¹ at a redox potential of 3.5 V vs. Li/Li⁺. The small diffusion length of the lithium ions (nanometer range) inside the LiFePO₄ grains allows a fast charge and discharge while maintaining most of the capacity (\geq 120 mAh g⁻¹ at 10C). To achieve an excellent electrochemical performance a lot of efforts have to be made to process nano-sized LiFePO₄ during electrode preparation compared to micro-sized ones. Additionally the volumetric density of a nano-sized material is generally less than the same material formed from micrometer-sized particles. Thus the volumetric energy density of the electrode is reduced limiting total energy of the lithium ion cell [3].

Different LiFePO₄ samples were prepared in order to combine the advantages of nano-sized materials (high capacity, fast charge / discharge...) with the good preparation properties and high volumetric densities of micro-sized. This was realized by an agglomeration of nano particles to micro-sized spheres. Recently developed agglomerated LiFePO₄ samples are compared with a commercial LiFePO₄ material P2 from Clariant. The different physical properties affect the electrode preparation e.g. viscosity, solid content, electrochemical properties and volumetric densities.

[1] A. Padhi, K Nanjundaswamy, J Goodenough, J.

- Electrochem. Soc. 144 (1997) 1188
- [2] Z. Chen, J.R. Dahn J. Electrochem. Soc. 149 (2002) A1184
- [3] P.G. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem. Int. Ed. 47 (2008) 2930