Atomic Layer Deposited Cu₂S as a Superior Electrode Material with High Capacity and Excellent Cycleability for Lithium-ion Batteries

- Authors: Xiangbo Meng¹, Shannon C. Riha², Timothy T. Fister³, Lynn Trahey³, Alex B. F. Martinson², Paul Fenter³, and Jeffrey W. Elam¹*
- Affiliations and Addresses: ¹Energy Systems Division, ²Materials Science Division, ³Chemical Sciences and Engineering Division, Argonne National Laboratory
- Addresses: 9700 South Cass Avenue, Argonne, IL, USA 60439.

*Corresponding author: jelam@anl.gov

Introduction

In the search for new materials enabling high energy density and exceptional cycling stability in lithium-ion batteries (LIBs), metal sulfides represent an important class of electrode materials undergoing intensive investigation [1]. To date, a large variety of metal sulfides have been investigated, such as Al₂S₃, SnS₂, FeS₂, and CuS.

Previously, solution-based methods (e.g. electrodeposition) dominated the fabrication of metal sulfides. Recently there has been increasing interest in atomic layer deposition (ALD) for growing extremely uniform and conformal thin films of metal sulfides. Among them, a successful case was reported with ALD-Cu₂S [2] by our group. In our recent effort, we investigated the performance of the ALD-Cu₂S in a LIB. We found that the ALD-Cu₂S provides excellent cycling stability and high areal capacity.

Experimental

ALD-Cu₂S was deposited on 2-dimensional (2D) planar Cu foils and 3D networked Cu foams (see figure 1(a) and (b)) at 130 °C, using $(Cu(^{s}Bu-amd))_{2}$ and H₂S as precursors. The Cu₂S film thickness can be precisely controlled at the sub-nanometer level, and the Cu foil and foam substrates were conformally coated to three different thickness: 50, 75, and 100 nm (see figure 1(c) and (d)). The ALD-coated Cu foils and foams as LIB electrodes were electrochemically tested in lithium half cells.

Results

The ALD-Cu₂S on Cu foil and Cu foam shows superior electrochemical performance, as seen in Figure 2 and 3. The 50-nm ALD-Cu₂S coated 2D planar Cu foils show extremely reliable cycleability over 400 charge-discharge cycles with no capacity fading after the first 20 cycles (see figure 2). Figure 3 exemplifies that 100-nm ALD-Cu₂S coated Cu foams as LIB electrodes show continuously increasing capacity after a drop in the first 10 cycles, going higher than 300μ A/cm². In particular, in both cases the Coulombic efficiencies are excellent, accounting for a value of over 99%. These factors indicate that ALD-Cu₂S is a promising electrode material for LIBs.

Figure 1. SEM images: (a). bare Cu foam, (b) a local area of bare Cu foam, (c, d) local areas of Cu foam coated with 100-nm Cu_2S .

Figure 2. The superior cyclability and Coulombic efficiency of 50-nm thick ALD-Cu₂S on Cu foil as LIB electrode. (current density = $10 \ \mu\text{A/cm}^2$, voltage = 0.01 - 2.00 V)

Figure 3. The superior cyclability and Coulombic efficiency of 100-nm thick ALD-Cu₂S on Cu foam as LIB electrode. (current density = $100 \ \mu\text{A/cm}^2$, voltage window = 0.01 - 3.00 V)

References:

J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacin, Adv. Mater., 2010, 22, E170-E192.
A. B. F. Martinson, J. W. Elam, and M. J. Pellin, Appl. Phys. Lett., 2009, 94, 123107.