The reaction of Sb-based (inter)metallics as Na-ion negative electrode materials

- <u>L. Baggetto</u>¹, Che-Nan Sun¹, Joanna Górka², P. Ganesh³, Thomas A. Zawodzinski^{1,4}, Gabriel M. Veith¹
- ¹ Materials Science and Technology Division, ²Chemical Sciences Division, ³Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- ⁴ Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA

The recent exploration of alternative technologies to Liion batteries has triggered a vast (re)exploration of suitable anode and cathode materials for Na-ion batteries [1]. Our recent results on several Sb-based (inter)metallic chemistries [2-5] will be discussed.

The presentation will focus on the structural and electrochemical properties of thin film model systems for various (inter)metallic chemistries. Emphasis on surface and bulk chemistry reactions using a combination of techniques (XRD, XPS, XAS, Mössbauer spectroscopy, GITT/PITT) will be given. In some cases the reaction with Li and Na will be compared to highlight the effect of the cation on the electrode intrinsic properties and overall performance.

Acknowledgement

Research was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy.

References

[1] B.L. Ellis, L.F. Nazar, "Sodium and sodium-ion energy storage batteries", Curr. Opin. Solid State Mater. Sci. 16 (2012) 168.

[2] L. Baggetto, E. Allcorn, A. Manthiram, G.M. Veith, " Cu_2Sb thin films as anode for Na-ion batteries", Electrochem. Commun. 27 (2013) 168.

[3] L. Baggetto, P. Ganesh, C.-N. Sun, R.P. Meisner, T.A. Zawodzinski, G.M. Veith "Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: Experiment and Theory", J. Mater. Chem. A (2013), under review.

[4] L. Baggetto, E. Allcorn, R.R. Unocic, A. Manthiram, Gabriel M. Veith, "*Extremely fast reaction kinetics of amorphous Mo*₃Sb₇ thin films as anodes for Li-ion and Na-ion batteries", Chem. Sci. (2013), under review.

[5] L. Baggetto, M. Marszewski, J. Górka, M. Jaroniec, G.M. Veith, "AlSb thin films as negative electrodes for Liion and Na-ion batteries", J. Power Sources (2013), under review.