## Mesoporous Niobium-Doped TiO<sub>2</sub> Support for Oxygen Evolution Catalyst in SPE Water Electrolyzer

<u>Chuanpu Hao</u><sup>1</sup>, Hong Lv<sup>1\*</sup>, Bing Li<sup>1</sup>, Jianxin Ma<sup>1\*</sup>

 School of Automotive Studies, 4800 Caoan Road, Tongji University, Shanghai 201804, China
Clean Energy Automotive Engineering Center, 4800
Caoan Road, Tongji University, Shanghai 201804, China \*Corresponding author. Tel: +86-21-6958-3850.
Fax: +86-21-6958-3850. E-mail: <u>lvhong@tongji.edu.cn</u> jxma@tongji.edu.cn

Hydrogen is well accepted as an important energy carrier with higher energy density and no harmful emissions. However, hydrogen is not an energy source and must be produced with other energy. Water splitting with renewable energy provides a most clean access for hydrogen production.

<sup>1</sup>SPE water electrolyzer (SPEWE) has been proven as an efficient solution to convert nowadays' great proportion of excess power generated by renewable energy such as wind and photovoltaic power. IrO<sub>2</sub> is widely employed as the oxygen evolution catalyst in SPE electrolyzer due to its high electrochemical activity as well as its stability in strong acid under high anode potential. Unfortunately, the scarcity of global iridium reserves obstructs SPEWE from espanding application. Dispersion with support has been introduced to Ir-base catalyst by researchers. <sup>2</sup>, <sup>3</sup>Modification of electric features by doping has made corrosion-resistant titania adequate for a support of catalysts in proton exchange membrane fuel cell (PEMFC). In this work, niobiumdoped TiO<sub>2</sub> with varied doping amount was prepared by evaporation-induced self-assembly (EISA) and then composited with  $IrO_2$  by Adams fusion method. Unsupported  $IrO_2$  was synthesized in the same process. Electrochemical characterizations of these samples were carry out in order to figure out their influence on oxygen evlution reaction (OER) catalyst.

XRD patterns of IrO<sub>2</sub>/[Ti<sub>100-x</sub>Nb<sub>x</sub>]<sub>1</sub>O<sub>2</sub> composite catalysts (x = 5, 10) show that IrO<sub>2</sub> particles has been synthesized at a nanometer scale. The [Ti95Nb5]1O2 contained two phases as the anatase and rutile, while [Ti<sub>95</sub>Nb<sub>5</sub>]<sub>1</sub>O<sub>2</sub> mantained a single-phase anatase structure after the IrO<sub>2</sub> synthesis, indicating strong stability under high temperature and extreme oxidizing atmosphere. Fig 1 gives cyclic and linear sweep voltammetry curves of 40wt%  $IrO_2/[Ti_{100-x}Nb_x]_1O_2$  (x = 5, 10) as well as unsupported IrO2 prepared in same process. Composite catalysts performed a higher capacitance brought by the doped titanium supports, and comparable activity of oxygen evolution reaction. The ohmic resistance of the supports caused additional overpotentials comparing with unsupported IrO<sub>2</sub>, while there was some performance improvement with the increase of doping amount. The stability of supported catalysts was found to be well gratifying, testified by tiny degradation after 1000 cycles as shown in Fig 2. This indicates niobium-doped TiO<sub>2</sub> as a promising oxygen evolution catalyst support with further optimization on doping amount, morphology and the phase structure.



Figure 1: Cyclic (left) and linear sweep voltammetry (right) of 40wt%  $IrO_2/[Ti_{100-x}Nb_x]_1O_2$  (x = 5, 10) and unsupported  $IrO_2$  in N<sub>2</sub>-saturated 0.1M HClO<sub>4</sub> solution. Sweep rates are 50 mV s<sup>-1</sup> and 5 mV s<sup>-1</sup> respectively.



Fig 2 Cyclic voltammetry of 40wt% IrO<sub>2</sub>/[Ti<sub>95</sub>Nb<sub>5</sub>]<sub>1</sub>O<sub>2</sub> before and after 1000 cycles.

## References

1. F Barbir, Sol. Energy, 78, 661(2005)..

2. T. B. Do, M. Cai, M. S. Ruthkosky, T. E. Moylan, *Electrochim. Acta*, **55** 8013(2010).

3. C. V. Subban, Q. Zhou, A. Hu, T. E. Moylan, F. T. Wagner, F. J. DiSalvo, *J. Am. Chem. Soc.* 132 17531(2010).