Oxidative processes in LiFeBO₃

Shou-Hang Bo,^a Kyung-Wan Nam,^b Olaf J. Borkiewicz,^c Yan-Yan Hu,^d Xiao-Qing Yang,^b Peter J. Chupas,^c Karena W. Chapman,^c Clare P. Grey *^{ad} and Peter G. Khalifah ^{*ab}

 ^a Chemistry Department, Stony Brook University, Stony Brook, NY 11794
^b Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973
^c X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, IL 60439
^d Chemistry Department, Cambridge University, CB2 1EW

Lithium-ion battery is a promising power source in large-scale devices, such as electric vehicles and plugin hybrid electric vehicles. This prospect of powering large-scale devices motivates a comprehensive survey of new cathode materials that have high energy densities. LiFeBO₃, with a 30% larger theoretical capacity and 10% larger energy density than LiFePO₄, has emerged recently as a new candidate. This promising material, however, suffers from poor rate capability and low operation voltage. Knowledge about the (de)lithiation processes of LiFeBO₃ is a key to fully "unlock" the potential of such a battery material and also its substituted variants.

Characterizations of the LiFeBO₃ (de)lithiation processes have been severely complicated by the difficultto-eliminate degradation process upon air exposure. Degradation of LiFeBO₃ immediately occurs when nano-LiFeBO₃ is exposed to air, resulting in the creation of a lithium-deficient degraded phase (Li_dFeBO₃)^{[1], [2]}. This difficult-to-eliminate degradation process makes it extremely difficult to fabricate pure LiFeBO₃-based electrode and complicates the analysis of the (de)lithiation processes. It is difficult to distinguish between LiFeBO₃, partially delithiated LiFeBO₃ (Li_{1-x}FeBO₃) and degraded LiFeBO₃ (Li_dFeBO₃) by diffraction techniques only, since they possess similar crystal structures/cell-volumes and thus difficult-to-distinguish diffraction "fingerprints".

The subtle volume change between LiFeBO₃ and "FeBO₃" poses another challenge in charactering the (de)lithiation processes. The lattice parameter variation was estimated to be only ~ 1% according to pervious density functional theory (DFT) calculations^[3]. Delithiation of LiFeBO₃ was first reported to occur through a solid-solution mechanism with a continuum of phases Li_{1-x}FeBO3, based on the shifts of the reflections in the X-ray diffraction patterns with a peak width $\Delta d/d$ of ~2%^[1]. This peak width is however even greater than the predicted lattice parameter variation (~1%) and thus limiting the significance of the results.

In order to provide insights into the (de)lithiation processes of LiFeBO₃ during electrochemical cycling, we have used a wide range of complementary structural probes to characterize such processes both in situ and ex situ (in situ X-ray absorption/diffraction, ex situ nuclear magnetic resonance and ex situ pair distribution function analysis). Of particular note is that these structurally similar phases (LiFeBO₃, Li_{1-x}FeBO₃ and Li_dFeBO₃) that are difficult to distinguish in diffraction can be easily distinguished in ⁷Li NMR spectra (Fig. 2).

(De)lithiation of LiFeBO₃ was demonstrated to proceed reversibly through a combination of two-phase reaction between LiFeBO₃ and Li_tFeBO₃ (t ~ 0.5), as well as a solid-solution reaction between Li_tFeBO₃ and Li_t-

 $_xFeBO_3~(0 < x < t).$ We also observed that the solid-solution reaction between Li_tFeBO_3 and $Li_{t-x}FeBO_3$ begins well before the two-phase reaction (LiFeBO_3-Li_tFeBO_3) is complete, rather than occurring in a typically sequential manner.

Another finding is a reversible low-voltage process (< 2 V) occurring to the degraded LiFeBO₃ (Li_dFeBO₃). It explains the origin of the commonly observed extra capacity below 2 V during the first discharge. Interestingly, lithiation of the degraded LiFeBO₃ does not produce LiFeBO₃, which distinguishes the degraded phase from a partially delithiated LiFeBO₃ phase.

In summary, our studies have provided fundamental insights into the oxidative processes in $LiFeBO_3$ (degradation and delithiation), and can serve as strong basis for further exploration of $LiFeBO_3$ and its substituted variants.

Figure 1. In situ XRD patterns of LiFeBO₃ during cycling (left) and its corresponding electrochemistry (right). Data were collected with a wavelength of ~0.41 Å.

Figure 2. ⁷Li magic angle spinning (MAS) NMR spectra of LiFeBO₃ samples at different stages of cycling (CH: charge, DIS: discharge).

References:

[1]. Yamada, A.; Iwane, N.; Harada, Y.; Nishimura, S.; Koyama, Y.; Tanaka, I. Advanced Materials 2010, **22** (32), 3583-3587

[2]. Bo, S.H.; Wang, F; Janssen, Y.; Zeng, D. L.; Nam K. W.; Xu, W. Q.; Du, L. S.; Graetz, J.; Yang, X. Q.; Parise, J.; Grey, C. P.; Khalifah, P. G. Journal of Material Chemistry 2012, **22**, 8799-8809

[3]. Seo, D. H.; Park, Y. U.; Kim, S. W.; Park, I.; Shakoor, R. A.; Kang, K. Physical Review B 2011, 83, 205127