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Lithium-ion battery is a promising power source
in large-scale devices, such as electric vehicles and plug-
in hybrid electric vehicles. This prospect of powering
large-scale devices motivates a comprehensive survey of
new cathode materials that have high energy densities
LiFeBQs, with a 30% larger theoretical capacity and 10%
larger energy density than LiFep®as emerged recently
as a new candidate. This promising material, however,
suffers from poor rate capability and low operation
voltage. Knowledge about the (de)lithiation processes of
LiFeBO; is a key to fully "unlock" the potential of such a
battery material and also its substituted variants.

Characterizations of the LiFeB{de)lithiation
processes have been severely complicated by the difficult-
to-eliminate degradation process upon air exposure
Degradation of LiFeB@immediately occurs when nano-
LiFeBO; is exposed to air, resulting in the creation of a
lithium-deficient degraded phase (EeBQ)™* 2. This
difficult-to-eliminate degradation process makes it
extremely difficult to fabricate pure LiFeBased
electrode and complicates the analysis of the (de)lithiation
processes. It is difficult to distinguish between LiFeBO
partially delithiated LiFeB® (Li,,FeBO3) and degraded
LiFeBOs (LigFeBGy) by diffraction techniques only, since
they possess similar crystal structures/cell-volumes and
thus difficultto-distinguish diffraction "fingerprints".

The subtle volume change between LiFg2@d
"FeB(O;" poses another challenge in charactering the
(de)lithiation processes. The lattice parameter variation
was estimated to be only ~ 1% according to pervious
density functional theory (DFT) calculatidils
Delithiation of LiFeBQ was first reported to occur
through a solid-solution mechanism with a continuum of
phases Li,FeBO3, based on the shifts of the reflections
in the Xray diffraction patterns with a peak width Ad/d of
~294". This peak width is however even greater than the
predicted lattice parameter variation (~1%) andisth
limiting the significance of the results

In order to provide insights into the (de)lithiation
processes of LiFeB{during electrochemical cycling, we
have used a wide range of complementary structural
probes to characterize such processes ipotlitu and ex
situ (in situ X-ray absorption/diffractionex situ nuclear
magnetic resonance awed situ pair distribution function
analysis) Of particular note is that tke structurally
similar phases (LiF&O;, Li;,FeBO; and LiFeBG;) that
are difficult to distinguish in diffraction can be easily
distinguished ifLi NMR spectra (Fig. 2)

(De)lithiation of LiFeBQ was demonstrated to
proceed reversibly through a combination of two-phase
reaction between LiFeB{and LiFeBG;(t ~ 0.5), as well
as a solid-solution reaction betweenFeBO; and Lj.

FeBQ; (0 < x < t) We also observed that the solid-
solution reaction betweenEeBQ; and Li,FeBO;begins
well before the two-phase reaction (LiFeBO,FeBQ)is
complete, rather than occurring in a typically sequential
manner.

Another finding is a reversible low-voltage
process (< 2 V) occurring to the degraded LiFgBO
(LisFeBG;). It explains the origin of the commonly
observed extra capacity below 2 V during the first
discharge Interestingly, lithiation of the degraded
LiFeBO; does not produce LiFeBQwhich distinguishes
the degraded phase from a partially delithiated LiF¢BO
phase.

In summary, our studies have provided
fundamental insights into the oxidative processes in
LiFeBO; (degradation and delithiation), and can serve as
strong basis for further exploration of LiFeB@nd its
substituted variants.
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Figure 1.In situ XRD patterns of LiFeB@during cycling (left) and its
corresponding electrochemistry (right). Data were ectlid with a
wavelength of ~0.41 A.
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Figure 2.7Li magic angle spinning (MAS) NMR spectra of LiFeBO
samples at different stages of cycling (CH: charge, DE&hdirge).
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