First principles modeling of the interface between a solid state lithium thiophosphate electrolyte and a lithium metal anode

N. A. W. Holzwarth and N. D. Lepley Department of Physics, Wake Forest University Winston-Salem, NC 27109, USA

Recently, there has been progress in improving the conductivity and stability of solid electrolytes such as Li₃PS₄.[1] We report the results of first principles computer modeling studies of ideal Li₃PS₄ electrolyte interfaces with metallic Li anodes.

For a variety of interface configurations, computer modeling studies show that Li₃PS₄ surfaces are structurally and chemically altered by the presence of Li metal. On the other hand, experiments have shown [1] that an electrochemical cell of $Li/Li_3PS_4/Li$ can be cycled many times. One possible explanation of the apparent stability of the Li_3PS_4 electrolyte/Li metal interface, is that a stable thin buffer layer is formed during the first few cycles. In order to computationally explore this possibility, we modeled a "thin film" buffer layer of Li2S on the surface of the electrolyte. Using first principles techniques described in previous work,[2] stable electrolyte-buffer layer configurations were found. Results for the idealized configurations indicate that a thin film of Li₂S can provide a protective buffer layer to stabilize the interface between the Li_3PS_4 electrolytes and Li metal anodes.

Acknowledgments

This work was supported by NSF Grant DMR-1105485. Computations were performed on the Wake Forest University DEAC cluster, a centrally managed resource with support provided in part by the University. Helpful discussions with Chengdu Liang and Nancy Dudney of Oak Ridge National Laboratory are gratefully acknowledged.

References

 Z. Liu, W. Fu, E. A. Payzant, X. Yu, Z. Wu. N. J. Dudney, J. Kiggans, K. Hong, A. J. Rondinone, and C. Liang, *J. Am. Chem. Soc.* 135, 975-978 (2013).
N. A. W. Holzwarth, N. D. Lepley, and Y. A. Du, *J. Power Sources* 196, 6870-6876 (2011).