

Investigation of the μ Hz to mHz frequency range of commercial lithium-ion cells

Jan Philipp Schmidt¹, André Weber¹, Ellen Ivers-Tiffée¹

¹Institut für Werkstoffe der Elektrotechnik (IWE),

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

Correspond to jan.schmidt@kit.edu

Measurements of the relaxation behavior of commercial lithium-ion cells show, that equilibration of the potential can exceed several hour, depending on SOC and cell chemistry. In case of a commercial cell with LiFePO₄ cathode, equilibration was not reached after 100h at SOC=0% and T=25°C.

Such relaxation times result from slow processes like solid-state diffusion, differential intercalation capacity [1] and self-discharge. Those are favorably analyzed by time-domain techniques (GITT, etc.), as EIS measurements require much longer measurement times. Further insight was gained by the calculation of the distribution of relaxation times (DRT) [2,3]. However, this sequential procedure can be replaced by an even faster approach.

A new and easy method for the evaluating pulse-measurements is presented, which furthermore allows direct access to the distribution of relaxation times (DRT).

The practicability of the new method is compared to a method based on the Fourier transform [4].

Two commercial cells are investigated:

(1) a stacked pouch cell comprising a blend cathode with NCA/LCO and

(2) a cylindrical cell with a LFP cathode.

For both cells impedance measurements and the DRT are presented for a variation of the SOC and down to frequencies as low as 10 μ Hz.

Figure 1: Distribution of relaxation times (DRT) of a commercial with NCA/LCO blend cathode for a variation of the SOC. The broad frequency range becomes accessible by combining EIS and the newly introduced pulse measurement method.

References

- [1] M.D. Levi and D. Aurbach, *Electrochim. Acta*, **45**, 167 (1999).
- [2] H. Schiclein, et al., *Journal of Applied Electrochem.*, **32** (8) (2002).
- [3] J. P. Schmidt, et al., *J. Power Sources*, **196** (12), p. 5342 (2010).
- [4] D. Klotz et al., *Electrochim. Acta*, **56**, 8763 (2011).