Li₂FeP₂O₇ as cathode material for Li-ion batteries Andreas Blidberg, Torbjörn Gustafsson, Fredrik Björefors Uppsala University, Department of Chemistry - Ångström Laboratory

Box 538, SE-75121, Uppsala, Sweden

To meet the growing demand for Li-ion batteries, inexpensive cathode materials made from abundant natural resources are required. Today's cathode materials are to a large extent based on cobalt, which is considered a strategic metal¹. Iron based cathode materials provide possible alternatives to cobalt based ones. Today LiFePO₄² has become the state-of-the-art iron based cathode material due to its high power efficiency with a structure stability resulting in high intrinsic safety. The drawback is the low potential (3.4 V vs. Li⁺/Li).

With the intention to investigate a number of existing and novel iron based materials regarding their electrochemical properties as cathodes, initial studies of $\text{Li}_2\text{FeP}_2\text{O}_7^3$ have been conducted in this work. $\text{Li}_2\text{FeP}_2\text{O}_7$ was synthesized, characterized, and used in pouch cell batteries. Figure 1 shows an XRD-pattern of the synthesized product.

Figure 1. XRD-pattern of the synthesized Li₂FeP₂O₇

 $Li_2FeP_2O_7$ offers a quasi two-dimensional diffusion pathway of Li-ions, which enables high electrochemical capacity even without nanosizing. It has been shown that reduction of the particle size by a combustion synthesis instead of a ceramic synthesis does not affect the electrochemical performance to a large extent. On the contrary, combustion synthesis provides a possible route to industrial up-scaling⁴. Materials with one-dimensional lithium diffusion, such as LiFePO₄, are also more sensitive to defects upon cycling, which could block the Li⁺ diffusion in a large part of the material.

In addition to the advantageous 2D lithium diffusion, Li₂FeP₂O₇ provides a slightly higher potential than LiFePO₄. It is also possible to increase the potential further by manganese doping. In Li₂FeP₂O₇ iron is either present in FeO₆ octahedral sites or FeO₅ bipyramidal sites, with some mixing of FeO₅ sites with LiO₅ sites. However, the FeO₅ sites can be stabilized by doping the material with manganese, resulting in some redox activity approaching 4 V^5 , compared to 3.5 V vs Li⁺/Li for the pure Li₂FeP₂O₇. If the Fe⁴⁺/Fe³⁺ redox couple can be accessed, there is also the possibility of extracting two Liions per Li₂FeP₂O₇ formula unit, resulting in a theoretical capacity of 220 mAh/g. There has been some indications that the $Fe^{4+/}Fe^{3+}$ redox couple could be active at potentials higher than 5 V vs. Li+/Li⁶, but more stable electrolytes than the standard organic liquid electrolytes are required to investigate this further.

These aspects of Li₂FeP₂O₇ together with cycling data for

half cells will be presented in this contribution.

Acknowledgements

This work is financed by the Swedish Foundation for Strategic Research through the project From road to load – A Swedish lithium battery materials group.

References

- 1. U.S. Department of Energy Critical Materials Strategy. (2011).
- Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. Journal of The Electrochemical Society 144, 1188–1194 (1997).
- Nishimura, S., Nakamura, M., Natsui, R. & Yamada, A. New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. Journal of the American Chemical Society 132, 13596–13597 (2010).
- Barpanda, P. et al. Eco-efficient splash combustion synthesis of nanoscale pyrophosphate (Li2FeP2O7) positive-electrode using Fe(III) precursors. Journal of Materials Chemistry 22, 13455-13459 (2012).
- Furuta, N., Nishimura, S., Barpanda, P. & Yamada, A. Fe³⁺/Fe²⁺ Redox Couple Approaching 4 V in Li. Chemistry of Materials 24, 1055–1061 (2012).
- Zhou, H., Upreti, N., Chernova, N., Hautier, G., Ceder, G & Whittingham M. S. Iron and Manganese Pyrophosphates as Cathodes for Lithium-Ion Batteries. Chemistry of Materials 23, 293–300 (2011).