Mechanistic study in delithiations of sulfur-substituted Li₂FeSiO₄ by first-principles calculations

Ying Zheng,^{1,2} Xuan Cheng^{1,2}, Yunsong Li¹

¹ Department of Materials Science and Engineering ² Fujian Key Laboratory of Advance Materials Xiamen University, Xiamen 361005, China

The first-principles calculations were performed to investigate the structural, electronic and electrochemical characteristics of Li₂FeSiO₄ and S-substituted Li₂FeSiO₄. The feasibility in removal of two Li ions from the proposed Li₂FeSiO₃S is further explored. The calculated results reveal that the delithiation paths of Li₂FeSiO₄ are significantly modified by substitution of an O with an S ion because of larger S radius. The bond lengths between Li-O and Li-S become longer and the gaps between the pseudo-layers $[Fe_2Si_2O_6S_2]_\infty$ becomes wider, leading to lower deintercalation voltages and minor structural deformations in Li₂FeSiO₃S. The extraction of the first Li ion involves Fe^{2+}/Fe^{3+} for both Li_2FeSiO_4 and Li_2FeSiO_3S , thus, the deintercalation voltage of Li₂FeSiO₃S reduces to 2.90 V with a slight expansion of 4.0% in cell volume. However, the extraction of the second Li ion in Li_2FeSiO_4 corresponds to a combined redox couple of $Fe^{3+}/Fe^{(4-\alpha)+}$ and O^{2-}/O^{r-} (0< α <1 and 1 < r < 2), which results in not only a large deintercalation voltage of 4.85 V, but also a large volume expansion of 11.5%. The hypothermal Li₂FeSiO₃S lowers the deintercalation voltage to 4.19 V with a new redox reaction of S^{2-}/S^{-} and a slight reduction of 2.3% in cell volume. Ultimately, a full extraction of two Li ions can be realized by Li₂FeSiO₃S in current conventional electrolytes.