Structures and performances of vanadium substituted Li₂FeSiO₄ prepared by different vanadium sources

Xuan Cheng^{1,2}, Hong Yang¹, Ying Zhang^{1,2}, Sui Gu¹

¹ Department of Materials Science and Engineering ² Fujian Key Laboratory of Advance Materials Xiamen University, Xiamen 361005, China

A series of V-substituted Li2FeSiO4 were prepared through sol-gel process and solid state reaction by using either NH_4VO_3 or V_2O_3 as V sources. Effects of V substitutions on the structures and performances of Li₂FeSiO₄ were studied. The synthesized Li₂FeSiO₄ exhibited a good crystallinity with P21/n structure, and nearly no impurities were detected. However, the Vsubstituted Li₂FeSiO₄ showed a similar P2₁/n structure with the major impurities of Li_2SiO_3 and V_3O_4/Fe_3O_4 . The discharge capacities of 160.9 mAh g^{-1} and 130.8 mAh g^{-1} were obtained for the Li₂FeSiO₄ and Li₂Fe₉₅V₅SiO₄, respectively, at C/16 and room temperature. The degree of graphitization in amorphous carbon was enhanced and the amounts of carbon coated were lowered with the increase of V substitutions. The presence of $\mathrm{Li}_2\mathrm{SiO}_3$ and V_3O_4/Fe_3O_4 impurities had a detrimental influence in the structure and performance of Li₂FeSiO₄.