Photocatalytic water oxidation with suspended Fe₂O₃ (hematite) nanocrystals

Bronwyn L. Harrod, Nicholas Brune, Christopher Wong, Frank E. Osterloh University of California-Davis One Shields Avenue, Davis, CA, USA

Water splitting with a Fe₂O₃ catalyst offers an energy alternative to fossil fuels by making use of visible solar radiation. Here we systematically studied dispersed 15-35 nm Fe_2O_3 nanocrystals for photocatalytic water oxidation under visible light. Particles were synthesized by hydrolysis of FeCl₃•6H₂O for 30 minutes at 100°C in slightly acidic conditions. X-ray diffraction measurements indicate that the $\alpha\mbox{-}Fe_2O_3$ is the present phase type, though traces of β -FeOOH contaminant were also detected. UV/Vis diffuse reflectance yield a bandgap of 2.12 eV for the nanocrystals. The water oxidation overpotential was determined using cyclic voltametry to be +0.43 V at pH 7. Over the course of 24 hours, 23.75 mg of Fe_2O_3 evolved up to 127 µmol of O₂ from 0.01 M aqueous NaIO₄ solution under visible irradiation from a 300 W Xe-arc lamp with a 400 nm longpass filter. The effects of ionic strength, pH, light intensity, photocatalyst amount, and sacrificial electron donor concentration on the oxygen evolution rate will also be reported.