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Electrochemical Shock in Cubic Spinels
William H. Woodford, W. Craig Carter, and Yet-Ming
Chiang
Department of Materials Science and Engineering,
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

“Electrochemical shock" — the electrochemical
cycling induced mechanical degradation of
electrochemical active  materials—contributes  to
impedance growth in lithium-ion batteries [1-3].eTtoot
cause of electrochemical shock is the shape chaduntyeg
lithium (de)intercalation, which is often large #md
anisotropic. The challenge of designing electroabam
shock resistant electrodes and operating conditidfess
an opportunity for new microstructure design ciéer

We preseniin-situ acoustic emission measurements and
corroborating micromechanical models which
demonstrate and explain C-rate  independent
electrochemical shock cubic spinel materials. Unlik
layered and olivine materials, which have anisatrop
shape changes, the cubic spinels undergo isoteb@ims

as composition is varied. However, these matersalsh

as LiMn,O,4 and LiNisMn; 0, undergo first-order phase-
transformations between two cubic phases. The tinea
misfit strains between the coexisting cubic phages
~1%, which is sufficient to drive fracture of patéis on
the micron scale. This is analogous to the cohgrenc
stress fracture which occurs in LiFepP[@], but the misfit
strain is isotropic in the spinels.

First-cycle, slow charge acoustic emission measengs,
shown in Figure 1 demonstrate that coarse LiDin
particles, with typical particle sizes of 2un are subject

to electrochemical shock, even during C/50 chargitg
observed acoustic emission is highly concentratethé
two-phase region. Finer particles, aroungri , are not
subject to this C-Rate-independent electrochensicatk.
These experimental results are in good agreemetit wi
micromechanical modeling which incorporates thespha
transforming nature of LiMiD, Figure 2 shows an
electrochemical shock map, which summarizes the
particle sizes and C-Rates at which electrochensicatk
is—and is not—possible in this material. The sald

line is the failure line for materials cycled thgbuthe
two-phase region, and this line is essentially @eRa
independent. The dashed black line is the failume for
cycling only through the single-phase region. Even
very fast charge rates >1000C, the two-phase cobgre
stresses are the dominant electrochemical shock
mechanism. Analogous experimental and computational
results are obtained for the high-voltage spinedteay
LiNi¢.sMny sO4.

C-Rate-independent electrochemical shock in thpsels
materials can be averted by controlling the partize
and/or by identifying chemical modifications which
reduce the misfit strain between the coexistingicub
phases.
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Figure 1. Half-cell voltage and cumulative acoustic
emission counts measured during first cycle C/5@rgd

of LiMn,O,; the as-received material has typical particle
size of~1 um while the coarsened particles a5 um.
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Figure 1: Electrochemical shock map for LiM@Q,,
accounting for both concentration gradient stressed
coherency stresses, assuming a fracture toughnfess o
Kic = 1 MPa-ni%. Also shown is the hypothetical failure
line for single-phase-only cycling of LiM@®, Across a
wide range of practical particle sizes and C-Raths,
dominant electrochemical shock mechanism is twasgha

coherency stresses, rather than concentrationegradi
stresses.
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