Nonlinear Analysis of Porous La_{0.9}Ca_{0.1}FeO_{3-δ} Electrodes in Oxygen and Hydrogen-Water Environments T. Geary, S. Adler University of Washington Seattle, WA 98195-1750

La_{0.9}Ca_{0.1}FeO_{3- $\delta}$} (LCF-91) electrodes offer thermodynamically stable operation in both oxidizing and reducing (<10⁻²⁰ atm) environments relevant to SOFC/SOECs making them suitable candidates for studying the kinetic, transport, and thermodynamic phenomena dictating the overall performance of mixed conducting electrodes across a wide range of gas conditions.

In order to better understand these rate-limiting phenomena, porous LCF-91|YSZ electrochemical cells at 700-800°C were analyzed using linear and nonlinear electrochemical impedance spectroscopy (EIS and NLEIS, respectively) in both oxidizing (0.01, 0.21, 1 atm O_2) and reducing (various H_2 - H_2O blends) gas environments. The data is interpreted using both one-dimensional macrohomogeneous and two-dimensional cylindrical models, similar to those used to study La_{1-x}Sr_xCOO_{3- δ}^{1,2}, allowing for a parallel surface diffusion pathway and altered surface thermodynamics of the electrode.

EIS data in oxygen environments, shown in Figure 1, imply a co-limitation of kinetics and diffusion. The strong p_{02} -dependence of the peak frequency, ω_c , and the weak p_{02} -dependence of the characteristic resistance, R_{chem} , impose constraints on possible rate-determining phenomena. However, the nonlinear response from NLEIS, such as the third-order voltage harmonic response U_{33} shown in Figure 2, is more revealing of the underlying mechanism. Using measured thermodynamic values of LCF-91 at low p_{02} (T. Geary, S. Adler, unpublished data), analysis is extended to reducing blends of H_2 and H_2O .

Figure 1: (a) The measured EIS response of LCF-91 halfcells after subtraction of the ohmic portion in 0.01, 0.21, and 1 atm O_2 (bal. N_2) reveals (b) ω_c to scale strongly with p_{O2} , while (c) R_{chem} remains largely p_{O2} -independent.

Figure 2: The measured dimensionless voltage Fourier coefficient U_{33} (corresponding to the third harmonic response of order current amplitude cubed) provided by NLEIS is very sensitive to changes in p_{02} relative to the linear EIS response.

References

1. J. R. Wilson, D. T. Schwartz, and S. B. Adler, *Electrochimica Acta*, **51**, 1389–1402 (2006) http://linkinghub.elsevier.com/retrieve/pii/S00134686050 08017.

2. Y. Lu, C. R. Kreller, and S. B. Adler, *Journal of The Electrochemical Society*, **156**, B513 (2009) http://jes.ecsdl.org/cgi/doi/10.1149/1.3079337.