Substituted LiCoPO₄ as Li-ion Cathode

Jan L. Allen¹, Samuel A. Delp¹, T. Richard Jow¹ and Jeff Wolfenstine¹

¹Electrochemistry Branch, Army Research Laboratory 2800 Powder Mill Road, Adelphi, MD 20783

There is strong interest in electrode materials for Li-ion batteries that function near 5 V for their high energy storage potential. With this in mind, LiCoPO₄ has been thought of as a promising cathode material owing to its high discharge voltage of around 4.8 V.¹ The structure of LiCoPO₄ is shown in figure 1 and a comparison of the discharge voltage of LiCoPO₄ to the discharge voltage of the isostructural LiFePO₄ is shown in figure 2. Initial results on LiCoPO₄ showed a severe loss of discharge capacity upon multiple charge-discharge cycles. For example, Tadanga et al². observed a 10th cycle discharge capacity of ~52% of the initial capacity, Bramnik et al.³ reported ~59% and Wolfenstine et al.⁴ reported ~53% capacity retention (This has been attributed to irreversible structural changes or amorphization of the charged, low– lithium content material and electrolyte degradation.

Our more recent work⁵ reported improved capacity retention using substitutionally-modified LiCoPO₄ in conjunction with an electrolyte additive⁶ that improves the electrolyte stability at high voltage. Our related work⁷ compared the electronic structure of LiFePO₄ and LiCoPO₄ through spectroscopic and electronic methods in order to understand the differences in electrochemical performance.

Herein we will present results showing further improvements to the electrochemical performance of substituted LiCoPO₄ including higher discharge capacity and improved cycle life. We will discuss alternative scalable synthesis methods, substitutional chemistry of LiCoPO₄ and performance enhancements that result from reformulating the electrolyte.

References

- 1. K. Amine, H. Yasuda and M. Yamachi, *Electrochem.* Solid State Lett., **3**, 178 (2000).
- K. Tadanaga, F. Mizuno, A. Hayashi, T. Minami and M. Tatsumisago, *Electrochemistry*, **71**, **1192** (2003).
- N.N. Bramnik, K.G.Bramnik, T. Buhrmester, C. Baehtz, H. Ehrenberg and H. Fuess, *J. Solid State Electrochem.* 8, 558 (2004).
- 4. J. Wolfenstine, U. Lee, B. Poese and J.L. Allen, J. *Power Sources*, **144**, 226 (2005).

5. J.L. Allen, T.R. Jow and J. Wolfenstine, J. Power Sources, 196 (2011) 8656.

- A. V. Cresce, A.V and K. Xu, J. Electrochem. Soc. 158, A337, 2011.
- 7. M.D Johannes, K. Hoang, J.L. Allen and K. Gaskell, Phys. Rev. B **85**, 115106 (2012).

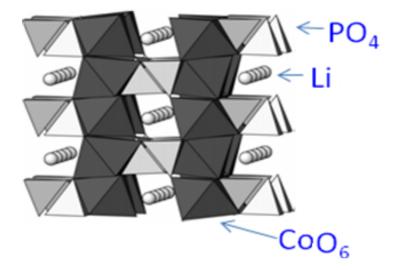
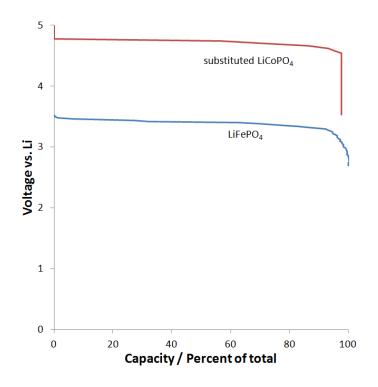



Figure 1: Structure of LiCoPO₄

Figure 2. Illustration of the voltage difference between LiFePO₄ and substituted LiCoPO₄.