TiO₂-WO₃ Nanotubular Composite Synthesized by Anoidzation of Simultaneous Multi-target Sputtered Thin Films Characterized by Laser Ablation ICP-MS

York R. Smith^a, Karumbaiah N. Chappanda^b, Swomitra K. Mohanty^c, Mano Misra^{a,c*}

^aMetallurgical Engineering Department, University of Utah

^bElectrical and Computer Engineering Department, University of Utah

^cChemical Engineering Department, University of Utah Salt Lake City, UT 84108

Titania nanotube arrays (T-NTA) synthesized by electrochemical anodization have received considerable attention for a variety of technical applications [1]. Deposition of thin Ti films (300-1,000 nm) on Si wafers by e-beam evaporation or sputtering is one method to synthesize T-NTA with site specific and patterned growth utilizing photolithographic methods [2] (Fig 1). During metal sputtered film deposition, multiple source targets can be used to simultaneously deposit two or more metals.

Fig 1.

In this study, 500 nm Ti-W nanocomposite thin films were deposited into Si wafers and conducting glass where the amount of W atoms deposited was varied from 5×10^{18} to 2×10^{19} atoms/cm³. These films were then subject to electrochemical anodization to form a TiO₂-WO₃ nanotubular composite and subsequently calcined in air at 250-550 °C.

Laser ablation ICP-MS (LA-ICP-MS) was used to characterize the composition of the thin film before and after anodization (Fig. 2) and calcination. LA-ICP-MS allows for analysis of localized composition with high accuracy (1~2%) with minimal destruction to the sample. Traditional ICP-MS analysis of these samples would require acid digestion of the entire sample whereas utilizing LA-ICP-MS allows for analysis of 5~350 μ m sample spot sizes enabling analysis of the sample throughout all the synthesis steps.

Fig 2. Ti-W thin film deposited on ITO glass before anodization (a), after anidzation (b), and a reference sample (c).

References

[1] Schmuki *et al*, *Angew Chm Int Ed*, **2011**, *50*, 2904

[2] Mohanty *et al*, *Nano Res Lett*, **2012**, *12*, 388.; Misra *et al*, *Nanotechnology*, **2012**, *23*, 385601.

Corresponding author: mano.misra@utah.edu