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Production of energy with fuel cells is an attractive 

energy conversion approach due to their high efficiency, 

low environmental impact, and their relatively flexible 

applications.
1
 Particularly, direct alcohol fuel cells 

(DAFCs) are widely investigated to produce energy and 

utilized for industrial energy supply. In the DAFCs, 

electrocatalyst is the key component to enhance the fuel 

cell efficiency. It has been suggested that rare earth 

oxides, such as ceria (cerium oxide), can be used as co-

catalyst because of their interesting chemical 

characteristics. It is also known that ceria has the oxygen 

storage capability (OSC) that improves the catalytic 

performance by storing oxygen during oxidation 

processes and releasing oxygen during reduction 

processes, leading to an enhancement in the performance 

of a DMFCs [12]. Some groups have found similar effect 

of ceria for methanol [15], ethanol [16], and ethylene 

glycol [17] oxidation.  

 

Cerium modified Pt nanoparticles catalysts have been 

prepared using Ce(III)-ethylenediaminetetraacetic acid 

(EDTA) chemistry with an impregnation method of 

20%Pt/Carbon Vulcan XC-72 (Pt/C). EDTA was used as 

a chelating agent to form a Ce(III) complex to achieve 

good dispersion of ceria on Pt/C while maintaining +3 

oxidation state. Different Ce(III) to Pt atomic ratios have 

been examined to optimize the catalyst material. The 

catalyst samples were characterized by using various 

characterization techniques such as X-ray diffraction, 

high-resolution transmission electron microscopy, X-ray 

absorption spectroscopy, among others. Their catalytic 

activities for methanol oxidation in half-cell and direct 

methanol fuel cell systems were done. It has been found 

that the catalytic activity of nominal 

6wt%Ce(III)/20wt%Pt/C exhibited better activities than 

20wt%Pt/C and other Ce(III)/20wt%Pt/C compositions.  

 

The power curves for the direct methanol fuel cell were 

determined by supplying 1.0 M methanol to the anode and 

200 sccm oxygen at the cathode at various cell 

temperatures such as 25, 60, 75 and 90°C. The results are 

shown in Figures 1. The 20P0C system exhibited an open 

circuit voltage (OCV) of 0.370V, 0.464V, 0.467 and 

0.498 V at 25, 60, 75, and 90°C, respectively. The 20P6C 

anode catalyst systems exhibited a 0.430 V, 0.495V, 

0.497V and 0.500 V at 25, 60, 75 and 90°C, respectively. 

The higher OCV values shown by 20P6C anode catalyst 

systems at both temperatures indicate its higher methanol 

oxidation activity, consequently leading to higher fuel 

utilization at the anode and lower methanol crossover. In 

addition, the power vs. current curves were made for the 

anodes 20P0C and 20P6C at 25, 60, 75 and 90°C, 

respectively. Figures 1A and 1B show that the 20P6C 

anode catalyst system exhibited higher power at a given 

current and at all fuel cell temperatures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Direct methanol fuel cell, power curves of (A) 

20P0C and (B) 20P6C as anode catalyst in single cell 

mode. Anode feed: 1.0 M methanol, 2.0 ml/min; cathode 

feed: air, 200 sccm; cell temperatures: 25, 60, 75 and 90 

ºC. 

 

 

 
 

Figure 2. Curve-fitted high-resolution X-ray 

photoelectron spectroscopy spectra for the (A) Pt 4f and 

(B) Ce 3d binding energy regions for Vulcan-Pt-Ce(III) 

catalyst. 
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